A CMOS-compatible process is proposed for the fabrication of thermopiles with high sensitivity in the 3-5 µm window, suited for use in non-dispersive infrared (NDIR) or photo acoustic (PA) gas sensors. Since CMOS passivation layers present low infrared absorption at those wavelengths, an interferometric absorbing layer based on thin metals with a dielectric spacer is adopted and embedded in the fabrication process. Different CMOS-compatible thermoelement designs are investigated and compared in terms of performance, considering Al/n-polysilicon, Al/p-polysilicon and p-/n-polysilicon solutions. Electrical tests on the fabricated devices indicate a noise equivalent power of about 0.76 nW for 1 mm(2) wide p-/n-polysilicon thermopiles, which makes such devices applicable in NDIR or PA-based sensing of relevant gases like CO, CO2, N2O or CH4 having absorption lines in the 3-5 µm wavelength range.

CMOS-compatible fabrication of thermopiles with high sensitivity in the 3-5 µm atmospheric window

Roncaglia A;Mancarella F;Cardinali GC
2007

Abstract

A CMOS-compatible process is proposed for the fabrication of thermopiles with high sensitivity in the 3-5 µm window, suited for use in non-dispersive infrared (NDIR) or photo acoustic (PA) gas sensors. Since CMOS passivation layers present low infrared absorption at those wavelengths, an interferometric absorbing layer based on thin metals with a dielectric spacer is adopted and embedded in the fabrication process. Different CMOS-compatible thermoelement designs are investigated and compared in terms of performance, considering Al/n-polysilicon, Al/p-polysilicon and p-/n-polysilicon solutions. Electrical tests on the fabricated devices indicate a noise equivalent power of about 0.76 nW for 1 mm(2) wide p-/n-polysilicon thermopiles, which makes such devices applicable in NDIR or PA-based sensing of relevant gases like CO, CO2, N2O or CH4 having absorption lines in the 3-5 µm wavelength range.
2007
Istituto per la Microelettronica e Microsistemi - IMM
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/45486
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? ND
social impact