Deterministic and stochastic differential equations models of the uptake of dodecanedioic acid (C12) are fitted to experimental data obtained on nine isolated, perfused rat livers. 11500 ?g of C12 were injected as a bolus into the perfusing liver solution. The concentrations of C12 in perfusate samples taken over 2 h from the beginning of the experiments were analyzed by High Performance Liquid Chromatography (HPLC). A two-compartment deterministic model is studied. To include spontaneous erratic variations in the metabolic processes the parameter for the uptake rate is randomized to obtain a stochastic differential equations model. Parameters are estimated in a two-step procedure: first, parameters in the drift part are estimated by least squares; then, the diffusion parameter is estimated using Monte-Carlo simulations to approximate the unknown likelihood function. Parameter estimation is carried out over a wide range of reasonable measurement error variances to check robustness of estimates. It is concluded that the kinetics of dodecanedioic acid, in the experimental conditions discussed, is well approximated by a model including spontaneous erratic variations in the liver uptake rate.
Stochastic Vs. Deterministic Uptake of Dodecanedioic Acid by Isolated Rat Livers
De Gaetano A
2005
Abstract
Deterministic and stochastic differential equations models of the uptake of dodecanedioic acid (C12) are fitted to experimental data obtained on nine isolated, perfused rat livers. 11500 ?g of C12 were injected as a bolus into the perfusing liver solution. The concentrations of C12 in perfusate samples taken over 2 h from the beginning of the experiments were analyzed by High Performance Liquid Chromatography (HPLC). A two-compartment deterministic model is studied. To include spontaneous erratic variations in the metabolic processes the parameter for the uptake rate is randomized to obtain a stochastic differential equations model. Parameters are estimated in a two-step procedure: first, parameters in the drift part are estimated by least squares; then, the diffusion parameter is estimated using Monte-Carlo simulations to approximate the unknown likelihood function. Parameter estimation is carried out over a wide range of reasonable measurement error variances to check robustness of estimates. It is concluded that the kinetics of dodecanedioic acid, in the experimental conditions discussed, is well approximated by a model including spontaneous erratic variations in the liver uptake rate.File | Dimensione | Formato | |
---|---|---|---|
prod_7141-doc_34774.pdf
non disponibili
Descrizione: Stochastic Vs. Deterministic Uptake of Dodecanedioic Acid by Isolated Rat Livers"
Dimensione
331.61 kB
Formato
Adobe PDF
|
331.61 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.