Varnishes are employed in painted artworks for protection from atmospheric pollution and oxidation andfor improving the esthetic appearance by providing an even and brilliant surface finish. Also, in somecases, colored varnishes are applied intentionally to modify the chromatic appearance of paintings. Varnishes undergo complex and differentiated structural and chemical changes over time depending on their composition and conservation conditions. The present work investigates the extent of degradation of the outermost layers of varnish coatings due to aging as a function of depth by using nonlinear optical microscopy (NLOM) in the modality of multiphoton excitation fluorescence (MPEF). This non-invasive technique has been employed for the determination of the thickness, with a microscopic axial and lateral resolution, of the affected regions of pictorial terpenoid varnish layers, such as dammar, mastic, shellac andsandarac, subjected to various types and degrees of aging, artificial, natural and a combination of both. Ahomemade nonlinear optical microscope, based on a tightly focused pulsed femtosecond laser emittingat 800 nm, was used for the investigation. Single-photon laser-induced fluorescence (LIF) measurementsserved to determine the degree of surface aging and the optimum NLOM-MPEF operating conditions andhelped to interpret the results obtained by applying the latter. These results signpost the correlationsbetween the extent of degradation, non-invasively determined by NLOM-MPEF, the type and length ofaging, the nature of the varnish and the initial thickness of the varnish layer.

In-depth structural and compositional assessment of aged terpenoid varnish layers by nonlinear optical microscopy

S. Siano;D. Ciofini;
2023

Abstract

Varnishes are employed in painted artworks for protection from atmospheric pollution and oxidation andfor improving the esthetic appearance by providing an even and brilliant surface finish. Also, in somecases, colored varnishes are applied intentionally to modify the chromatic appearance of paintings. Varnishes undergo complex and differentiated structural and chemical changes over time depending on their composition and conservation conditions. The present work investigates the extent of degradation of the outermost layers of varnish coatings due to aging as a function of depth by using nonlinear optical microscopy (NLOM) in the modality of multiphoton excitation fluorescence (MPEF). This non-invasive technique has been employed for the determination of the thickness, with a microscopic axial and lateral resolution, of the affected regions of pictorial terpenoid varnish layers, such as dammar, mastic, shellac andsandarac, subjected to various types and degrees of aging, artificial, natural and a combination of both. Ahomemade nonlinear optical microscope, based on a tightly focused pulsed femtosecond laser emittingat 800 nm, was used for the investigation. Single-photon laser-induced fluorescence (LIF) measurementsserved to determine the degree of surface aging and the optimum NLOM-MPEF operating conditions andhelped to interpret the results obtained by applying the latter. These results signpost the correlationsbetween the extent of degradation, non-invasively determined by NLOM-MPEF, the type and length ofaging, the nature of the varnish and the initial thickness of the varnish layer.
2023
Istituto di Fisica Applicata - IFAC
Nonlinear optical microscopy
Multiphoton excitation fluorescence
Terpenoid varnishes
Artificial aging
Natural aging
File in questo prodotto:
File Dimensione Formato  
prod_491152-doc_204750.pdf

accesso aperto

Descrizione: In-depth structural and compositional assessment of aged terpenoid varnish layers by nonlinear optical microscopy
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.2 MB
Formato Adobe PDF
2.2 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/455216
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact