The occurrence of sinkhole phenomena in Italy is a prevalent and very uncertain class of geological hazards that pose a significant threat to human infrastructure and individuals. These events are characterized by their unpredictability and the challenges associated with their accurate forecasting. Both natural and anthropic factors influence the occurrence of these events; therefore, accurate identification of the above factors is critical for effective proactive and predictive efforts. The work presented in this paper refers to a collapse that occurred in a volcanic region in northern Latium (central Italy) on 31 January 2023. The area has been monitored using drones since the early stages of the sinkhole's formation and has continued to date. Then, the collapse and the neighboring area were examined via geophysical and geochemical investigations to identify potential underlying factors. Geophysical and geochemical data were combined to provide a preliminary hypothesis on the collapse's genesis. The obtained data indicate that the structural collapse can be attributable to the fluctuation in groundwater levels as well as the development of instabilities along its banks, leading to a growth in its dimensions.
Natural Sinkhole Monitoring and Characterization: The Case of Latera Sinkhole (Latium, Central Italy)
Ruggiero L;Ciotoli G;
2024
Abstract
The occurrence of sinkhole phenomena in Italy is a prevalent and very uncertain class of geological hazards that pose a significant threat to human infrastructure and individuals. These events are characterized by their unpredictability and the challenges associated with their accurate forecasting. Both natural and anthropic factors influence the occurrence of these events; therefore, accurate identification of the above factors is critical for effective proactive and predictive efforts. The work presented in this paper refers to a collapse that occurred in a volcanic region in northern Latium (central Italy) on 31 January 2023. The area has been monitored using drones since the early stages of the sinkhole's formation and has continued to date. Then, the collapse and the neighboring area were examined via geophysical and geochemical investigations to identify potential underlying factors. Geophysical and geochemical data were combined to provide a preliminary hypothesis on the collapse's genesis. The obtained data indicate that the structural collapse can be attributable to the fluctuation in groundwater levels as well as the development of instabilities along its banks, leading to a growth in its dimensions.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.