Shaft loads of marine propellers in noncavitating oblique-flow conditions are herein investigated. The application of a Boundary Element Method (BEM) hydrodynamics is verified by the analysis of two propeller models, the highly-skewed DTMB 4679 and the unskewed INSEAN E779A, for which a comparison with experimental and numerical data is addressed. Whenever available, outcomes from PROCAL, a validated panel code solver developed by MARIN, and simulations from higher-fidelity CFD (Computational Fluid Dynamics) approaches, are used for comparison purposes. For moderate oblique-inflow angles, the comparison with experiments shows a good capability of the proposed BEM formulation in capturing unsteady blade pressures. In terms of shaft loads fluctuations, satisfactory results are carried out with respect to CFD outcomes. Moreover, it is found that averaged thrust and torque, as well as the lateral and vertical moments, are comparable with PROCAL predictions and in good agreement with CFD computations, whereas lateral forces suffer from the lack of a realistic estimation of viscous effects. Good estimates are also shown for the average location of thrust eccentricity, as long as the transverse loading on the hub is negligible.

Marine propeller shaft loading analysis in moderate oblique-flow conditions

Testa C;Greco L;
2022

Abstract

Shaft loads of marine propellers in noncavitating oblique-flow conditions are herein investigated. The application of a Boundary Element Method (BEM) hydrodynamics is verified by the analysis of two propeller models, the highly-skewed DTMB 4679 and the unskewed INSEAN E779A, for which a comparison with experimental and numerical data is addressed. Whenever available, outcomes from PROCAL, a validated panel code solver developed by MARIN, and simulations from higher-fidelity CFD (Computational Fluid Dynamics) approaches, are used for comparison purposes. For moderate oblique-inflow angles, the comparison with experiments shows a good capability of the proposed BEM formulation in capturing unsteady blade pressures. In terms of shaft loads fluctuations, satisfactory results are carried out with respect to CFD outcomes. Moreover, it is found that averaged thrust and torque, as well as the lateral and vertical moments, are comparable with PROCAL predictions and in good agreement with CFD computations, whereas lateral forces suffer from the lack of a realistic estimation of viscous effects. Good estimates are also shown for the average location of thrust eccentricity, as long as the transverse loading on the hub is negligible.
2022
Istituto di iNgegneria del Mare - INM (ex INSEAN)
Marine propellers
Oblique-flow conditions
Unsteady BEM hydrodynamics
File in questo prodotto:
File Dimensione Formato  
prod_478117-doc_195821.pdf

solo utenti autorizzati

Descrizione: Marine propeller shaft loading analysis in moderate oblique-flow conditions
Tipologia: Versione Editoriale (PDF)
Dimensione 2.82 MB
Formato Adobe PDF
2.82 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/455581
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact