We demonstrate that the physical mechanism behind electroresistive switching in oxide Schottky systems is electroformation, as in insulating oxides. Negative resistance shown by the hysteretic current-voltage curves proves that impact ionization is at the origin of the switching. Analyses of the capacitance-voltage and conductance-voltage curves through a simple model show that an atomic rearrangement is involved in the process. Switching in these systems is a bulk effect, not strictly confined at the interface but at the charge space region.

Unification of bulk and interface electroresistive switching in oxide systems

Pepe GP
2008

Abstract

We demonstrate that the physical mechanism behind electroresistive switching in oxide Schottky systems is electroformation, as in insulating oxides. Negative resistance shown by the hysteretic current-voltage curves proves that impact ionization is at the origin of the switching. Analyses of the capacitance-voltage and conductance-voltage curves through a simple model show that an atomic rearrangement is involved in the process. Switching in these systems is a bulk effect, not strictly confined at the interface but at the charge space region.
2008
INFM
DOPED SRTIO3
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/455669
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 22
social impact