We developed a microscopic theory of electron transport in superlattices within the Wannier-Stark approach by including the interaction associated with Zener tunneling between the energy levels pertaining to adjacent quantum wells. By using a Monte Carlo technique we have simulated the hopping motion associated with absorption and emission of polar optical phonons and determined the main transport parameters for the case of a GaAs/GaAlAs structure at room temperature. Interaction between the levels is found to be responsible for a systematic increase of the level energy with respect to the bottom of the quantum well at electric fields above about 20 kV/cm. When compared with the non-interacting case, at the highest fields the average carrier energy evidences a consistent increase, which leads to a significant softening of the negative slope of both the drift velocity and diffusivity versus electric field behavior. (C) 2008 Elsevier Ltd. All rights reserved.

High-field transport in semiconductor superlattices for interacting Wannier-Stark levels

2008

Abstract

We developed a microscopic theory of electron transport in superlattices within the Wannier-Stark approach by including the interaction associated with Zener tunneling between the energy levels pertaining to adjacent quantum wells. By using a Monte Carlo technique we have simulated the hopping motion associated with absorption and emission of polar optical phonons and determined the main transport parameters for the case of a GaAs/GaAlAs structure at room temperature. Interaction between the levels is found to be responsible for a systematic increase of the level energy with respect to the bottom of the quantum well at electric fields above about 20 kV/cm. When compared with the non-interacting case, at the highest fields the average carrier energy evidences a consistent increase, which leads to a significant softening of the negative slope of both the drift velocity and diffusivity versus electric field behavior. (C) 2008 Elsevier Ltd. All rights reserved.
2008
INFM
QUANTUM DIFFUSION
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/455676
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact