A key goal in designing an artificial intelligence capable of performing complex tasks is a mechanism that allows it to efficiently choose appropriate and relevant actions in a variety of situations and contexts. Nowhere is this more obvious than in the case of building a general intelligence, where the contextual choice and application of actions must be done in the presence of large numbers of alternatives, both subtly and obviously distinct from each other. We present a framework for action selection based on the concurrent activity of multiple forward and inverse models. A key characteristic of the proposed system is the use of simulation to choose an action: the system continuously simulates the external states of the world (proximal and distal) by internally emulating the activity of its sensors, adopting the same decision process as if it were actually operating in the world, and basing subsequent choice of action on the outcome of such simulations. The work is part of our larger effort to create new observation-based machine learning techniques. We describe our approach, an early implementation, and an evaluation in a classical AI problem-solving domain: the Sokoban puzzle.

Simulation and anticipation as tools for coordinating with the future

La Tona Giuseppe;Pezzulo Giovanni;
2012

Abstract

A key goal in designing an artificial intelligence capable of performing complex tasks is a mechanism that allows it to efficiently choose appropriate and relevant actions in a variety of situations and contexts. Nowhere is this more obvious than in the case of building a general intelligence, where the contextual choice and application of actions must be done in the presence of large numbers of alternatives, both subtly and obviously distinct from each other. We present a framework for action selection based on the concurrent activity of multiple forward and inverse models. A key characteristic of the proposed system is the use of simulation to choose an action: the system continuously simulates the external states of the world (proximal and distal) by internally emulating the activity of its sensors, adopting the same decision process as if it were actually operating in the world, and basing subsequent choice of action on the outcome of such simulations. The work is part of our larger effort to create new observation-based machine learning techniques. We describe our approach, an early implementation, and an evaluation in a classical AI problem-solving domain: the Sokoban puzzle.
2012
Istituto di linguistica computazionale "Antonio Zampolli" - ILC
Istituto di Scienze e Tecnologie della Cognizione - ISTC
Machine learning techniques
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/4557
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact