Molecular beam epitaxy has been used to grow SrF2 thin films on Si(001). The growth modes have been investigated by atomic force microscopy, electron diffraction, and photoemission. Two principal growth regimes have been identified: (i) when deposition is carried out with the substrate held at a temperature of 700-750 degrees C, SrF2 molecules react with the substrate giving rise to a Sr-rich wetting layer on top of which three dimensional bulklike fluoride ridges develop; (ii) when deposition is carried out with the substrate held at 400 degrees C, a nanopatterned film forms with characteristic triangular islands. Results are compared to the growth mode of CaF2 on Si(001) under analogous deposition conditions. Morphological and structural differences between the two systems are associated with the larger lattice parameter of SrF2 with respect to CaF2, resulting in a larger mismatch with the Si substrate.
Interface chemistry and epitaxial growth modes of SrF2 on Si(001)
Pasquali L;Doyle BP;Nannarone S
2007
Abstract
Molecular beam epitaxy has been used to grow SrF2 thin films on Si(001). The growth modes have been investigated by atomic force microscopy, electron diffraction, and photoemission. Two principal growth regimes have been identified: (i) when deposition is carried out with the substrate held at a temperature of 700-750 degrees C, SrF2 molecules react with the substrate giving rise to a Sr-rich wetting layer on top of which three dimensional bulklike fluoride ridges develop; (ii) when deposition is carried out with the substrate held at 400 degrees C, a nanopatterned film forms with characteristic triangular islands. Results are compared to the growth mode of CaF2 on Si(001) under analogous deposition conditions. Morphological and structural differences between the two systems are associated with the larger lattice parameter of SrF2 with respect to CaF2, resulting in a larger mismatch with the Si substrate.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.