Dirac fermions play a central role in the study of topological phases, for they can generate a variety of exotic states, such as Weyl semimetals and topological insulators. The control and manipulation of Dirac fermions constitute a fundamental step toward the realization of novel concepts of electronic devices and quantum computation. By means of Angle-Resolved PhotoEmission Spectroscopy (ARPES) experiments and ab initio simulations, here, we show that Dirac states can be effectively tuned by doping a transition metal sulfide, BaNiS2, through Co/Ni substitution. The symmetry and chemical characteristics of this material, combined with the modification of the charge-transfer gap of BaCo1-xNixS2 across its phase diagram, lead to the formation of Dirac lines, whose position in k-space can be displaced along the Gamma - M symmetry direction and their form reshaped. Not only does the doping x tailor the location and shape of the Dirac bands, but it also controls the metal-insulator transition in the same compound, making BaCo1-xNixS2 a model system to functionalize Dirac materials by varying the strength of electron correlations.
Moving Dirac nodes by chemical substitution
Amaricci Adriano;Vobornik Ivana;Fujii Jun;
2021
Abstract
Dirac fermions play a central role in the study of topological phases, for they can generate a variety of exotic states, such as Weyl semimetals and topological insulators. The control and manipulation of Dirac fermions constitute a fundamental step toward the realization of novel concepts of electronic devices and quantum computation. By means of Angle-Resolved PhotoEmission Spectroscopy (ARPES) experiments and ab initio simulations, here, we show that Dirac states can be effectively tuned by doping a transition metal sulfide, BaNiS2, through Co/Ni substitution. The symmetry and chemical characteristics of this material, combined with the modification of the charge-transfer gap of BaCo1-xNixS2 across its phase diagram, lead to the formation of Dirac lines, whose position in k-space can be displaced along the Gamma - M symmetry direction and their form reshaped. Not only does the doping x tailor the location and shape of the Dirac bands, but it also controls the metal-insulator transition in the same compound, making BaCo1-xNixS2 a model system to functionalize Dirac materials by varying the strength of electron correlations.File | Dimensione | Formato | |
---|---|---|---|
nilforoushan-et-al-2021-moving-dirac-nodes-by-chemical-substitution.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.61 MB
Formato
Adobe PDF
|
1.61 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.