The direct injection of gaseous fuels involves the presence of under-expanded jets due to the high pressure-ratios and the strong gas compressibility. Understanding the physical development of such processes is essential for developing Direct Injection (DI) devices suitable for application in internal combustion engines fueled by methane or hydrogen. In this work a coupled experimental-numerical characterization of a spray, issued by a multi-hole injector, was performed. The experimental characterization of the jet evolution was recorded by means of schlieren imaging technique and then a numerical simulation procedure was assessed using the measurements for validating. A density-based solver, capable of simulating highly compressible jets and developed within OpenFOAM environment, was used to study the effects of thermodynamic conditions on the development of the injection process. The obtained results shed more light on the characteristics of the gaseous spray demonstrating how these features really affects the development of the injection process and the quality of the air/fuel mixture.

Direct injection of methane in advanced propulsion systems: effects of thermodynamic conditions

Luigi Allocca;Alessandro Montanaro;
2022

Abstract

The direct injection of gaseous fuels involves the presence of under-expanded jets due to the high pressure-ratios and the strong gas compressibility. Understanding the physical development of such processes is essential for developing Direct Injection (DI) devices suitable for application in internal combustion engines fueled by methane or hydrogen. In this work a coupled experimental-numerical characterization of a spray, issued by a multi-hole injector, was performed. The experimental characterization of the jet evolution was recorded by means of schlieren imaging technique and then a numerical simulation procedure was assessed using the measurements for validating. A density-based solver, capable of simulating highly compressible jets and developed within OpenFOAM environment, was used to study the effects of thermodynamic conditions on the development of the injection process. The obtained results shed more light on the characteristics of the gaseous spray demonstrating how these features really affects the development of the injection process and the quality of the air/fuel mixture.
2022
Methane injection
Optical diagnostic
Injection CFD
Nozzle geometry effects
Air/fuel mixture
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/456046
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact