We study the asymptotic behavior, as the lattice spacing ? tends to zero, of the discrete elastic energy induced by topological singularities in an inhomogeneous ? periodic medium within a two-dimensional model for screw dislocations in the square lattice. We focus on the |log?| regime which, as ?->0 allows the emergence of a finite number of limiting topological singularities. We prove that the ?-limit of the |log?| scaled functionals as ?->0 is equal to the total variation of the so-called "limiting vorticity measure" times a factor depending on the homogenized energy density of the unscaled functionals.

Screw dislocations in periodic media: Variational coarse graining of the discrete elastic energy

De Luca L
2023

Abstract

We study the asymptotic behavior, as the lattice spacing ? tends to zero, of the discrete elastic energy induced by topological singularities in an inhomogeneous ? periodic medium within a two-dimensional model for screw dislocations in the square lattice. We focus on the |log?| regime which, as ?->0 allows the emergence of a finite number of limiting topological singularities. We prove that the ?-limit of the |log?| scaled functionals as ?->0 is equal to the total variation of the so-called "limiting vorticity measure" times a factor depending on the homogenized energy density of the unscaled functionals.
2023
Istituto Applicazioni del Calcolo ''Mauro Picone''
Discrete systems
Homogenization
Topological singularities
Gamma-convergence
File in questo prodotto:
File Dimensione Formato  
prod_483424-doc_199286.pdf

accesso aperto

Descrizione: Screw dislocations in periodic media: Variational coarse graining of the discrete elastic energy
Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 415.62 kB
Formato Adobe PDF
415.62 kB Adobe PDF Visualizza/Apri
Alicandro-Cicalese-De-Luca-NLA-online.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 825.87 kB
Formato Adobe PDF
825.87 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/456089
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact