Pansharpening refers to the use of a panchromatic image to improve the spatial resolution of a multi-spectral image while preserving spectral signatures. However, existing pansharpening methods are still unsatisfactory at balancing the trade-off between spatial enhancement and spectral fidelity. In this paper, a multi-scale and multi-stream fusion network (named MMFN) that leverages the multi-scale information of the source images is proposed. The proposed architecture is simple, yet effective, and can fully extract various spatial/spectral features at different levels. A multi-stage reconstruction loss was adopted to recover the pansharpened images in each multi-stream fusion block, which facilitates and stabilizes the training process. The qualitative and quantitative assessment on three real remote sensing datasets (i.e., QuickBird, Pleiades, and WorldView-2) demonstrates that the proposed approach outperforms state-of-the-art methods.

Multi-Scale and Multi-Stream Fusion Network for Pansharpening

Vivone Gemine;
2023

Abstract

Pansharpening refers to the use of a panchromatic image to improve the spatial resolution of a multi-spectral image while preserving spectral signatures. However, existing pansharpening methods are still unsatisfactory at balancing the trade-off between spatial enhancement and spectral fidelity. In this paper, a multi-scale and multi-stream fusion network (named MMFN) that leverages the multi-scale information of the source images is proposed. The proposed architecture is simple, yet effective, and can fully extract various spatial/spectral features at different levels. A multi-stage reconstruction loss was adopted to recover the pansharpened images in each multi-stream fusion block, which facilitates and stabilizes the training process. The qualitative and quantitative assessment on three real remote sensing datasets (i.e., QuickBird, Pleiades, and WorldView-2) demonstrates that the proposed approach outperforms state-of-the-art methods.
2023
Istituto di Metodologie per l'Analisi Ambientale - IMAA
pansharpening
multi-scale
multi-stream fusion
multi-stage reconstruction loss
image enhancement
image fusion
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/456650
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact