Pansharpening refers to the fusion of a low spatial-resolution multispectral image with a high spatial-resolution panchromatic image. In this paper, we propose a novel low-rank tensor completion (LRTC)-based framework with some regularizers for multispectral image pansharpening, called LRTCFPan. The tensor completion technique is commonly used for image recovery, but it cannot directly perform the pansharpening or, more generally, the super-resolution problem because of the formulation gap. Different from previous variational methods, we first formulate a pioneering image super-resolution (ISR) degradation model, which equivalently removes the downsampling operator and transforms the tensor completion framework. Under such a framework, the original pansharpening problem is realized by the LRTC-based technique with some deblurring regularizers. From the perspective of regularizer, we further explore a local-similarity-based dynamic detail mapping (DDM) term to more accurately capture the spatial content of the panchromatic image. Moreover, the low-tubal-rank property of multispectral images is investigated, and the low-tubal-rank prior is introduced for better completion and global characterization. To solve the proposed LRTCFPan model, we develop an alternating direction method of multipliers (ADMM)-based algorithm. Comprehensive experiments at reduced-resolution (i.e., simulated) and full-resolution (i.e., real) data exhibit that the LRTCFPan method significantly outperforms other state-of-the-art pansharpening methods. The code is publicly available at: https://github.com/zhongchengwu/code_LRTCFPan

LRTCFPan: Low-Rank Tensor Completion Based Framework for Pansharpening

Vivone Gemine
2023

Abstract

Pansharpening refers to the fusion of a low spatial-resolution multispectral image with a high spatial-resolution panchromatic image. In this paper, we propose a novel low-rank tensor completion (LRTC)-based framework with some regularizers for multispectral image pansharpening, called LRTCFPan. The tensor completion technique is commonly used for image recovery, but it cannot directly perform the pansharpening or, more generally, the super-resolution problem because of the formulation gap. Different from previous variational methods, we first formulate a pioneering image super-resolution (ISR) degradation model, which equivalently removes the downsampling operator and transforms the tensor completion framework. Under such a framework, the original pansharpening problem is realized by the LRTC-based technique with some deblurring regularizers. From the perspective of regularizer, we further explore a local-similarity-based dynamic detail mapping (DDM) term to more accurately capture the spatial content of the panchromatic image. Moreover, the low-tubal-rank property of multispectral images is investigated, and the low-tubal-rank prior is introduced for better completion and global characterization. To solve the proposed LRTCFPan model, we develop an alternating direction method of multipliers (ADMM)-based algorithm. Comprehensive experiments at reduced-resolution (i.e., simulated) and full-resolution (i.e., real) data exhibit that the LRTCFPan method significantly outperforms other state-of-the-art pansharpening methods. The code is publicly available at: https://github.com/zhongchengwu/code_LRTCFPan
2023
Istituto di Metodologie per l'Analisi Ambientale - IMAA
Tensors
Pansharpening
Mathematical models
Superresolution
Electron tubes
Degradation
Task analysis
Low-rank tensor completion (LRTC)
dynamic detail mapping (DDM)
tubal rank
alternating direction method of multipliers (ADMM)
pansharpening
super-resolution
File in questo prodotto:
File Dimensione Formato  
prod_486629-doc_201947.pdf

solo utenti autorizzati

Descrizione: LRTCFPan: Low-Rank Tensor Completion Based Framework for Pansharpening
Tipologia: Versione Editoriale (PDF)
Dimensione 7.08 MB
Formato Adobe PDF
7.08 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/456666
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 90
  • ???jsp.display-item.citation.isi??? 85
social impact