The development of intelligent photonic systems made of stimuli-responsive materials, i.e., with features tunable and switchable by environmental signals, is gaining increasing attention. Here, the study reports on switchable optical gain based on complex arrays of nanofibers made of thermo-responsive poly(2-n-propyl-2-oxazoline), incorporating a blue-emitting chromophore. The fluorescent component endows the nanofibers with optical gain in addition to the moisture absorption capability of the polymer. Light amplification is found with temperature- and humidity-dependent excitation threshold. The threshold value is halved close to the polymer cloud point temperature, enabling reversible switching of the emission intensity upon temperature change. Waveguiding analysis by back-focal plane imaging on individual fibers allows the switching mechanisms to be rationalized, in terms of moisture sorption swelling-induced morphological changes. These responsive light-emitting nanofibers may find application in a novel class of lasers with dynamically-controlled properties, environmentally-switchable optoelectronics, and smart sensors.

Optical Gain Switching by Thermo-Responsive Light-Emitting Nanofibers through Moisture Sorption Swelling

Camposeo Andrea;Pisignano Dario
2023

Abstract

The development of intelligent photonic systems made of stimuli-responsive materials, i.e., with features tunable and switchable by environmental signals, is gaining increasing attention. Here, the study reports on switchable optical gain based on complex arrays of nanofibers made of thermo-responsive poly(2-n-propyl-2-oxazoline), incorporating a blue-emitting chromophore. The fluorescent component endows the nanofibers with optical gain in addition to the moisture absorption capability of the polymer. Light amplification is found with temperature- and humidity-dependent excitation threshold. The threshold value is halved close to the polymer cloud point temperature, enabling reversible switching of the emission intensity upon temperature change. Waveguiding analysis by back-focal plane imaging on individual fibers allows the switching mechanisms to be rationalized, in terms of moisture sorption swelling-induced morphological changes. These responsive light-emitting nanofibers may find application in a novel class of lasers with dynamically-controlled properties, environmentally-switchable optoelectronics, and smart sensors.
2023
Istituto Nanoscienze - NANO
hygroscopic polymers
light-emitting nanofibers
nanofiber networks
nanofibers
optical gain
stimuli-responsive materials
thermo-responsive polymers
File in questo prodotto:
File Dimensione Formato  
prod_485105-doc_200865.pdf

solo utenti autorizzati

Descrizione: Published paper
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.89 MB
Formato Adobe PDF
2.89 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/456787
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact