Quantum extreme learning machines (QELMs) aim to efficiently post-process the outcome of fixed -- generally uncalibrated -- quantum devices to solve tasks such as the estimation of the properties of quantum states. The characterisation of their potential and limitations, which is currently lacking, will enable the full deployment of such approaches to problems of system identification, device performance optimization, and state or process reconstruction. We present a framework to model QELMs, showing that they can be concisely described via single effective measurements, and provide an explicit characterisation of the information exactly retrievable with such protocols. We furthermore find a close analogy between the training process of QELMs and that of reconstructing the effective measurement characterising the given device. Our analysis paves the way to a more thorough understanding of the capabilities and limitations of QELMs, and has the potential to become a powerful measurement paradigm for quantum state estimation that is more resilient to noise and imperfections. © 2023, The Author(s).

Potential and limitations of quantum extreme learning machines

Palma G M
2023

Abstract

Quantum extreme learning machines (QELMs) aim to efficiently post-process the outcome of fixed -- generally uncalibrated -- quantum devices to solve tasks such as the estimation of the properties of quantum states. The characterisation of their potential and limitations, which is currently lacking, will enable the full deployment of such approaches to problems of system identification, device performance optimization, and state or process reconstruction. We present a framework to model QELMs, showing that they can be concisely described via single effective measurements, and provide an explicit characterisation of the information exactly retrievable with such protocols. We furthermore find a close analogy between the training process of QELMs and that of reconstructing the effective measurement characterising the given device. Our analysis paves the way to a more thorough understanding of the capabilities and limitations of QELMs, and has the potential to become a powerful measurement paradigm for quantum state estimation that is more resilient to noise and imperfections. © 2023, The Author(s).
2023
Istituto Nanoscienze - NANO
Machine learning; Quantum optics; Device performance; Learning machines; Performance optimizations; Performance States; Post process; Property; Quantum device; Quantum state; System-identification; Uncalibrated
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/456848
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact