We report on the automatic alignment of a transmission electron microscope equipped with an orbital angular momentum sorter using a convolutional neural network. The neural network is able to control all relevant parameters of both the electron-optical setup of the microscope and the external voltage source of the sorter without input from the user. It can compensate for mechanical and optical misalignments of the sorter, in order to optimize its spectral resolution. The alignment is completed over a few frames and can be kept stable by making use of the fast fitting time of the neural network.

Automatic Alignment of an Orbital Angular Momentum Sorter in a Transmission Electron Microscope Using a Convolutional Neural Network

Rosi Paolo;Frabboni Stefano;Rotunno Enzo
;
Grillo Vincenzo
2022

Abstract

We report on the automatic alignment of a transmission electron microscope equipped with an orbital angular momentum sorter using a convolutional neural network. The neural network is able to control all relevant parameters of both the electron-optical setup of the microscope and the external voltage source of the sorter without input from the user. It can compensate for mechanical and optical misalignments of the sorter, in order to optimize its spectral resolution. The alignment is completed over a few frames and can be kept stable by making use of the fast fitting time of the neural network.
2022
Istituto Nanoscienze - NANO
Istituto Nanoscienze - NANO - Sede Secondaria Modena
artificial intelligence
electron beam shaping
electron vortex beam
orbital angular momentum sorter
transmission electron microscope
File in questo prodotto:
File Dimensione Formato  
prod_484177-doc_199987.pdf

solo utenti autorizzati

Descrizione: Published paper
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.5 MB
Formato Adobe PDF
1.5 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2111.05032v2.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 938.4 kB
Formato Adobe PDF
938.4 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/456880
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact