BRAFV600E comes as two main splicing variants. The well-studied ref isoform and the recently discovered X1 isoform are co-expressed in cancer cells and differ in terms of 3'UTR length and sequence, as well as C-term protein sequence. Here, we use a melanoma model in zebrafish to study the role played by each isoform in larval pigmentation, nevi formation, and their progression into melanoma tumours. We show that both BRAFV600E-ref and BRAFV600E-X1 proteins promote larval pigmentation and nevi formation, while melanoma-free survival curves performed in adult fish indicate that BRAFV600E-ref protein is a much stronger melanoma driver that BRAFV600E-X1 protein. Crucially, we also show that the presence of the 3'UTR suppresses the effect of ref protein. Our data highlight the necessity to undertake a systematic study of BRAFV600E isoforms, in order to uncover the full spectrum of their kinase-(in)dependent and coding-(in)dependent functions, hence to develop more informed strategies for therapeutic targeting.
Differential impact of BRAFV600E isoforms on tumorigenesis in a zebrafish model of melanoma
De Paolo R;Cucco F;Pitto L;Poliseno L
2023
Abstract
BRAFV600E comes as two main splicing variants. The well-studied ref isoform and the recently discovered X1 isoform are co-expressed in cancer cells and differ in terms of 3'UTR length and sequence, as well as C-term protein sequence. Here, we use a melanoma model in zebrafish to study the role played by each isoform in larval pigmentation, nevi formation, and their progression into melanoma tumours. We show that both BRAFV600E-ref and BRAFV600E-X1 proteins promote larval pigmentation and nevi formation, while melanoma-free survival curves performed in adult fish indicate that BRAFV600E-ref protein is a much stronger melanoma driver that BRAFV600E-X1 protein. Crucially, we also show that the presence of the 3'UTR suppresses the effect of ref protein. Our data highlight the necessity to undertake a systematic study of BRAFV600E isoforms, in order to uncover the full spectrum of their kinase-(in)dependent and coding-(in)dependent functions, hence to develop more informed strategies for therapeutic targeting.File | Dimensione | Formato | |
---|---|---|---|
prod_484247-doc_200047.pdf
accesso aperto
Descrizione: Differential impact of BRAFV600E isoforms on tumorigenesis in a zebrafish model of melanoma
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
8.91 MB
Formato
Adobe PDF
|
8.91 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.