The description of the spatial patterns within the atmospheric ENSO circulation has been extended to tropospheric moisture fields and low-level moisture divergence during November-December-January, differentiating the role of El Nino, when lame amounts of condensational heat are concentrated in the central Pacific, from La Nina that tends to mainly redistribute heat to Maritime Continents and higher latitudes. The influence of the described mechanisms on equatorial convection in the context of the variability of ENSO on longer timescales for the end of the 20th century is questioned. However, the inaccuracy of the atmospheric reanalysis products in terms of precipitation and the shorter time length of more reliable datasets hamper a final conclusion on this issue.

El Nino-Southern Oscillation (ENSO) is an important air-sea coupled phenomenon that plays a dominant role in the variability of the tropical regions. Observations, atmospheric and oceanic reanalysis datasets are used to classify ENSO and non-ENSO years to investigate the typical features of its periodicity and atmospheric circulation patterns. Among non-ENSO years, we have analyzed a group, called type-II years, with very small SST anomalies in summer that tend to weaken the correlation between ENSO and precipitation in the equatorial regions. A unique character of ENSO is studied in terms of the quasi-biennial periodicity of SST and heat content (HC) fields over the Pacific-Indian Oceans. While the SST tends to have higher biennial frequency along the Equator, the HC maximizes it into two centers in the western Pacific sector. The north-western center, located east of Mindanao, is strongly correlated with SST in the NINO3 region. The classification of El Nino and La Nina years, based on NINO3 SST and north-western Pacific HC respectively, has been used to identify and describe temperature and wind patterns over an extended-ENSO region that includes the tropical Pacific and Indian Oceans.

ENSO and Its Effects on the Atmospheric Heating Processes

Cherchi Annalisa;
2012

Abstract

El Nino-Southern Oscillation (ENSO) is an important air-sea coupled phenomenon that plays a dominant role in the variability of the tropical regions. Observations, atmospheric and oceanic reanalysis datasets are used to classify ENSO and non-ENSO years to investigate the typical features of its periodicity and atmospheric circulation patterns. Among non-ENSO years, we have analyzed a group, called type-II years, with very small SST anomalies in summer that tend to weaken the correlation between ENSO and precipitation in the equatorial regions. A unique character of ENSO is studied in terms of the quasi-biennial periodicity of SST and heat content (HC) fields over the Pacific-Indian Oceans. While the SST tends to have higher biennial frequency along the Equator, the HC maximizes it into two centers in the western Pacific sector. The north-western center, located east of Mindanao, is strongly correlated with SST in the NINO3 region. The classification of El Nino and La Nina years, based on NINO3 SST and north-western Pacific HC respectively, has been used to identify and describe temperature and wind patterns over an extended-ENSO region that includes the tropical Pacific and Indian Oceans.
2012
The description of the spatial patterns within the atmospheric ENSO circulation has been extended to tropospheric moisture fields and low-level moisture divergence during November-December-January, differentiating the role of El Nino, when lame amounts of condensational heat are concentrated in the central Pacific, from La Nina that tends to mainly redistribute heat to Maritime Continents and higher latitudes. The influence of the described mechanisms on equatorial convection in the context of the variability of ENSO on longer timescales for the end of the 20th century is questioned. However, the inaccuracy of the atmospheric reanalysis products in terms of precipitation and the shorter time length of more reliable datasets hamper a final conclusion on this issue.
ENSO
heating processes
atmosphere and ocean
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/456984
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact