MicroRNAs (miRNAs) are small non-coding ribonucleic acids (RNAs) that play a role in many regulatory pathways in eukaryotes. They usually exert their functions by binding mature messenger RNAs. The prediction of the binding targets of the endogenous miRNAs is crucial to unravel the processes they are involved in. In this work, we performed an extensive miRNA binding sites (MBS) prediction over all the annotated transcript sequences and made them available through an UCSC track. MBS annotation track allows to study and visualize the human miRNA binding sites transcriptome-wide in a genome browser, together with any other available information the user is interested in. In the creation of the database that underlies the MBS track, three consolidated algorithms of miRNA binding prediction have been used: PITA, miRanda and TargetScan, and information about the binding sites predicted by all of them has been collected. MBS track displays high-confident miRNA binding sites for the whole length of each human transcript, both coding and non-coding ones. Each annotation can redirect to a web page with the details of the miRNA binding and the involved transcripts. MBS can be easily applied to retrieve specific information such as the effects of alternative splicing on miRNA binding or when a specific miRNA binds an exon-exon junction in the mature RNA. Overall, MBS will be of great help for studying and visualizing, in a user-friendly mode, the predicted miRNA binding sites on all the transcripts arising from a gene or a region of interest. Database URL https://datasharingada.fondazionerimed.com:8080/MBS.

MBS: a genome browser annotation track for high-confident microRNA binding sites in whole human transcriptome

Arancio W;
2023

Abstract

MicroRNAs (miRNAs) are small non-coding ribonucleic acids (RNAs) that play a role in many regulatory pathways in eukaryotes. They usually exert their functions by binding mature messenger RNAs. The prediction of the binding targets of the endogenous miRNAs is crucial to unravel the processes they are involved in. In this work, we performed an extensive miRNA binding sites (MBS) prediction over all the annotated transcript sequences and made them available through an UCSC track. MBS annotation track allows to study and visualize the human miRNA binding sites transcriptome-wide in a genome browser, together with any other available information the user is interested in. In the creation of the database that underlies the MBS track, three consolidated algorithms of miRNA binding prediction have been used: PITA, miRanda and TargetScan, and information about the binding sites predicted by all of them has been collected. MBS track displays high-confident miRNA binding sites for the whole length of each human transcript, both coding and non-coding ones. Each annotation can redirect to a web page with the details of the miRNA binding and the involved transcripts. MBS can be easily applied to retrieve specific information such as the effects of alternative splicing on miRNA binding or when a specific miRNA binds an exon-exon junction in the mature RNA. Overall, MBS will be of great help for studying and visualizing, in a user-friendly mode, the predicted miRNA binding sites on all the transcripts arising from a gene or a region of interest. Database URL https://datasharingada.fondazionerimed.com:8080/MBS.
2023
Istituto per la Ricerca e l'Innovazione Biomedica -IRIB
miRNA
MBS
UCSC
PITA
miRanda
TargetScan
File in questo prodotto:
File Dimensione Formato  
prod_482029-doc_198316.pdf

solo utenti autorizzati

Descrizione: MBS: a genome browser annotation track for high-confident microRNA binding sites in whole human transcriptome
Tipologia: Versione Editoriale (PDF)
Dimensione 2.52 MB
Formato Adobe PDF
2.52 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/457299
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact