A single gamma-ray spectrometer installed at the end of a collimator can be used to infer the total emission from a tokamak plasma if the transport of gamma-rays from the plasma to the detector is known. In such analysis, the plasma emission profile plays a fundamental role, since it impacts the fraction of plasma volume intercepted by the detector line of sight. In this work, the DT 17 MeV fusion gamma-rays emission profile of the JET discharge #99608 from second 46 to 48 has been estimated both with the TRANSP code and reconstructed through tomographic inversion based on the neutron camera data, assuming that fusion gamma-rays have the same profile as the 14 MeV fusion neutrons. The gamma-ray transport has been evaluated both by MonteCarlo simulations and analytical calculations. By combining MonteCarlo and analytical evaluations of the gamma-ray transport in different ways with the estimated radiation emission profile, we provide four different routes to determine the total gamma-ray yield from measurements whose results agree within better than 10%.
Analytical and MonteCarlo approaches to infer the total gamma ray emission from the JET tokamak
Dal Molin A;Rigamonti D;Rebai M;Nocente M;Gorini G;Grosso G;Muraro A;Perelli Cippo E;Putignano O;Tardocchi M
2023
Abstract
A single gamma-ray spectrometer installed at the end of a collimator can be used to infer the total emission from a tokamak plasma if the transport of gamma-rays from the plasma to the detector is known. In such analysis, the plasma emission profile plays a fundamental role, since it impacts the fraction of plasma volume intercepted by the detector line of sight. In this work, the DT 17 MeV fusion gamma-rays emission profile of the JET discharge #99608 from second 46 to 48 has been estimated both with the TRANSP code and reconstructed through tomographic inversion based on the neutron camera data, assuming that fusion gamma-rays have the same profile as the 14 MeV fusion neutrons. The gamma-ray transport has been evaluated both by MonteCarlo simulations and analytical calculations. By combining MonteCarlo and analytical evaluations of the gamma-ray transport in different ways with the estimated radiation emission profile, we provide four different routes to determine the total gamma-ray yield from measurements whose results agree within better than 10%.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.