We study nonequilibrium steady states of a one-dimensional stochastic model, originally introduced as an approximation of the discrete nonlinear Schrodinger equation. This model is characterized by two conserved quantities, namely mass and energy; it displays a 'normal', homogeneous phase, separated by a condensed (negative-temperature) phase, where a macroscopic fraction of energy is localized on a single lattice site. When steadily maintained out of equilibrium by external reservoirs, the system exhibits coupled transport herein studied within the framework of linear response theory. We find that the Onsager coefficients satisfy an exact scaling relationship, which allows reducing their dependence on the thermodynamic variables to that on the energy density for unitary mass density. We also determine the structure of the nonequilibrium steady states in proximity of the critical line, proving the existence of paths which partially enter the condensed region. This phenomenon is a consequence of the Joule effect: the temperature increase induced by the mass current is so strong as to drive the system to negative temperatures. Finally, since the model attains a diverging temperature at finite energy, in such a limit the energy-mass conversion efficiency reaches the ideal Carnot value.
Onsager coefficients in a coupled-transport model displaying a condensation transition
Iubini Stefano;Politi Antonio;Politi Paolo
2023
Abstract
We study nonequilibrium steady states of a one-dimensional stochastic model, originally introduced as an approximation of the discrete nonlinear Schrodinger equation. This model is characterized by two conserved quantities, namely mass and energy; it displays a 'normal', homogeneous phase, separated by a condensed (negative-temperature) phase, where a macroscopic fraction of energy is localized on a single lattice site. When steadily maintained out of equilibrium by external reservoirs, the system exhibits coupled transport herein studied within the framework of linear response theory. We find that the Onsager coefficients satisfy an exact scaling relationship, which allows reducing their dependence on the thermodynamic variables to that on the energy density for unitary mass density. We also determine the structure of the nonequilibrium steady states in proximity of the critical line, proving the existence of paths which partially enter the condensed region. This phenomenon is a consequence of the Joule effect: the temperature increase induced by the mass current is so strong as to drive the system to negative temperatures. Finally, since the model attains a diverging temperature at finite energy, in such a limit the energy-mass conversion efficiency reaches the ideal Carnot value.File | Dimensione | Formato | |
---|---|---|---|
prod_485227-doc_200933.pdf
accesso aperto
Descrizione: Onsager coefficients in a coupled-transport model displaying a condensation transition
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
6.59 MB
Formato
Adobe PDF
|
6.59 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.