We present a low order virtual element discretization for time dependent Maxwell's equations, which allow for the use of general polyhedral meshes. Both the semi- and fully-discrete schemes are considered. We derive optimal a priori estimates and validate them on a set of numerical experiments. As pivot results, we discuss some novel inequalities associated with de Rahm sequences of nodal, edge, and face virtual element spaces.
Virtual elements for Maxwell's equations
Beirao da Veiga Lourenco;Dassi Franco;Manzini Gianmarco;Mascotto Lorenzo
2022
Abstract
We present a low order virtual element discretization for time dependent Maxwell's equations, which allow for the use of general polyhedral meshes. Both the semi- and fully-discrete schemes are considered. We derive optimal a priori estimates and validate them on a set of numerical experiments. As pivot results, we discuss some novel inequalities associated with de Rahm sequences of nodal, edge, and face virtual element spaces.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
prod_485709-doc_201268.pdf
accesso aperto
Descrizione: Virtual elements for Maxwell's equations
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
785.28 kB
Formato
Adobe PDF
|
785.28 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.