We present a low order virtual element discretization for time dependent Maxwell's equations, which allow for the use of general polyhedral meshes. Both the semi- and fully-discrete schemes are considered. We derive optimal a priori estimates and validate them on a set of numerical experiments. As pivot results, we discuss some novel inequalities associated with de Rahm sequences of nodal, edge, and face virtual element spaces.

Virtual elements for Maxwell's equations

L Beirao da Veiga;G Manzini;L Mascotto
2022

Abstract

We present a low order virtual element discretization for time dependent Maxwell's equations, which allow for the use of general polyhedral meshes. Both the semi- and fully-discrete schemes are considered. We derive optimal a priori estimates and validate them on a set of numerical experiments. As pivot results, we discuss some novel inequalities associated with de Rahm sequences of nodal, edge, and face virtual element spaces.
2022
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Polyhedral meshes
Virtual element method
Maxwell's equations
File in questo prodotto:
File Dimensione Formato  
prod_485709-doc_201268.pdf

accesso aperto

Descrizione: Virtual elements for Maxwell's equations
Tipologia: Versione Editoriale (PDF)
Dimensione 785.28 kB
Formato Adobe PDF
785.28 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/457530
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 24
social impact