We present a low order virtual element discretization for time dependent Maxwell's equations, which allow for the use of general polyhedral meshes. Both the semi- and fully-discrete schemes are considered. We derive optimal a priori estimates and validate them on a set of numerical experiments. As pivot results, we discuss some novel inequalities associated with de Rahm sequences of nodal, edge, and face virtual element spaces.

Virtual elements for Maxwell's equations

Beirao da Veiga Lourenco;Dassi Franco;Manzini Gianmarco;Mascotto Lorenzo
2022

Abstract

We present a low order virtual element discretization for time dependent Maxwell's equations, which allow for the use of general polyhedral meshes. Both the semi- and fully-discrete schemes are considered. We derive optimal a priori estimates and validate them on a set of numerical experiments. As pivot results, we discuss some novel inequalities associated with de Rahm sequences of nodal, edge, and face virtual element spaces.
2022
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Polyhedral meshes
Virtual element method
Maxwell's equations
File in questo prodotto:
File Dimensione Formato  
prod_485709-doc_201268.pdf

accesso aperto

Descrizione: Virtual elements for Maxwell's equations
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 785.28 kB
Formato Adobe PDF
785.28 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/457530
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 26
social impact