The significant boost in surface-enhanced Raman scattering (SERS) by the chemical enhancement of semiconducting oxides is a pivotal finding. It offers a prospective path toward high uniformity and low-cost SERS substrates. However, a detailed understanding of factors that influence the charge transfer process is still insufficient. Herein, we reveal the important role of defect-induced band offset and electron lifetime change in SERS evolution observed in a MoO3 oxide semiconductor. By modulating the density of oxygen vacancy defects using ultraviolet (UV) light irradiation, SERS is found to be improved with irradiation time in the first place, but such improvement later deteriorates for prolonged irradiation even if more defects are generated. Insights into the observed SERS evolution are provided by ultraviolet photoelectron spectroscopy and femtosecond time-resolved transient absorption spectroscopy measurements. Results reveal that (1) a suitable offset between the energy band of the substrate and the orbitals of molecules is facilitated by a certain defect density and (2) defect states with relatively long electron lifetime are essential to achieve optimal SERS performance.
Insights into the Semiconductor SERS Activity: The Impact of the Defect-Induced Energy Band Offset and Electron Lifetime Change
Lu Zhou;Lucia Petti;
2023
Abstract
The significant boost in surface-enhanced Raman scattering (SERS) by the chemical enhancement of semiconducting oxides is a pivotal finding. It offers a prospective path toward high uniformity and low-cost SERS substrates. However, a detailed understanding of factors that influence the charge transfer process is still insufficient. Herein, we reveal the important role of defect-induced band offset and electron lifetime change in SERS evolution observed in a MoO3 oxide semiconductor. By modulating the density of oxygen vacancy defects using ultraviolet (UV) light irradiation, SERS is found to be improved with irradiation time in the first place, but such improvement later deteriorates for prolonged irradiation even if more defects are generated. Insights into the observed SERS evolution are provided by ultraviolet photoelectron spectroscopy and femtosecond time-resolved transient absorption spectroscopy measurements. Results reveal that (1) a suitable offset between the energy band of the substrate and the orbitals of molecules is facilitated by a certain defect density and (2) defect states with relatively long electron lifetime are essential to achieve optimal SERS performance.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.