In this chapter we review recent results on the conforming virtual element approximation of polyharmonic and eleastodynamics problems. The structure and the content of this review is motivated by three paradigmatic examples of applications: classical and anisotropic Cahn-Hilliard equation and phase field models for brittle fracture, that are briefly discussed in the first part of the chapter. We present and discuss the mathematical details of the conforming virtual element approximation of linear polyharmonic problems, the classical Cahn-Hilliard equation and linear elastodynamics problems.

The conforming Virtual Element Method for polyharmonic and elastodynamics problems: A review

PF Antonietti;G Manzini;M Verani
2022

Abstract

In this chapter we review recent results on the conforming virtual element approximation of polyharmonic and eleastodynamics problems. The structure and the content of this review is motivated by three paradigmatic examples of applications: classical and anisotropic Cahn-Hilliard equation and phase field models for brittle fracture, that are briefly discussed in the first part of the chapter. We present and discuss the mathematical details of the conforming virtual element approximation of linear polyharmonic problems, the classical Cahn-Hilliard equation and linear elastodynamics problems.
2022
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
978-3-030-95318-8
N/A
File in questo prodotto:
File Dimensione Formato  
prod_485734-doc_201300.pdf

accesso aperto

Descrizione: The conforming Virtual Element Method for polyharmonic and elastodynamics problems: A review
Tipologia: Versione Editoriale (PDF)
Dimensione 698.71 kB
Formato Adobe PDF
698.71 kB Adobe PDF Visualizza/Apri
prod_485734-doc_201299.pdf

solo utenti autorizzati

Descrizione: The conforming Virtual Element Method for polyharmonic and elastodynamics problems: A review
Tipologia: Versione Editoriale (PDF)
Dimensione 1.42 MB
Formato Adobe PDF
1.42 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/457555
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact