An increasing number of high-performing gas separation membranes is reported almost on a daily basis, yet only a few of them have reached commercialisation while the rest are still considered pure research outcomes. This is often attributable to a rapid change in the performance of these separation systems over a relatively short time. A common approach to address this issue is the development of mixed matrix membranes (MMMs). These hybrid systems typically utilise either crystalline or amorphous additives, so-called fillers, which are incorporated into polymeric membranes at different loadings, with the aim to improve and stabilise the final gas separation performance. After a general introduction to the most relevant models to describe the transport properties in MMMs, this review intends to investigate and discuss the main advantages and disadvantages derived from the inclusion of fillers of different morphologies. Particular emphasis will be given to the study of the compatibility at the interface between the filler and the matrix created by the two different classes of additives, the inorganic and crystalline fillers vs. their organic and amorphous counterparts. It will conclude with a brief summary of the main findings.

The Difference in Performance and Compatibility between Crystalline and Amorphous Fillers in Mixed Matrix Membranes for Gas Separation (MMMs)

Jansen Johannes Carolus;Longo Mariagiulia
2023

Abstract

An increasing number of high-performing gas separation membranes is reported almost on a daily basis, yet only a few of them have reached commercialisation while the rest are still considered pure research outcomes. This is often attributable to a rapid change in the performance of these separation systems over a relatively short time. A common approach to address this issue is the development of mixed matrix membranes (MMMs). These hybrid systems typically utilise either crystalline or amorphous additives, so-called fillers, which are incorporated into polymeric membranes at different loadings, with the aim to improve and stabilise the final gas separation performance. After a general introduction to the most relevant models to describe the transport properties in MMMs, this review intends to investigate and discuss the main advantages and disadvantages derived from the inclusion of fillers of different morphologies. Particular emphasis will be given to the study of the compatibility at the interface between the filler and the matrix created by the two different classes of additives, the inorganic and crystalline fillers vs. their organic and amorphous counterparts. It will conclude with a brief summary of the main findings.
2023
Istituto per la Tecnologia delle Membrane - ITM
amorphous polymers
gas separation
gas transport properties
mixed matrix membranes
MOFs
PIMs
porous polymers
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/457585
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact