We present a systematic study of dynamical heterogeneity in a model for permanent gels upon approaching the gelation threshold. We find that the fluctuations of the self-intermediate scattering function are increasing functions of time, reaching a plateau whose value, at large length scales, coincides with the mean cluster size and diverges at the percolation threshold. Another measure of dynamical heterogeneities-i.e., the fluctuations of the self-overlap-displays instead a peak and decays to zero at long times. The peak, however, also scales as the mean cluster size. Arguments are given for this difference in the long-time behavior. We also find that the non-Gaussian parameter reaches a plateau in the long-time limit. The value of the plateau of the non-Gaussian parameter, which is connected to the fluctuations of diffusivity of clusters, increases with the volume fraction and remains finite at the percolation threshold.

Dynamical heterogeneity in a model for permanent gels: Different behavior of dynamical susceptibilities

A de Candia;A Fierro;A Coniglio
2008

Abstract

We present a systematic study of dynamical heterogeneity in a model for permanent gels upon approaching the gelation threshold. We find that the fluctuations of the self-intermediate scattering function are increasing functions of time, reaching a plateau whose value, at large length scales, coincides with the mean cluster size and diverges at the percolation threshold. Another measure of dynamical heterogeneities-i.e., the fluctuations of the self-overlap-displays instead a peak and decays to zero at long times. The peak, however, also scales as the mean cluster size. Arguments are given for this difference in the long-time behavior. We also find that the non-Gaussian parameter reaches a plateau in the long-time limit. The value of the plateau of the non-Gaussian parameter, which is connected to the fluctuations of diffusivity of clusters, increases with the volume fraction and remains finite at the percolation threshold.
2008
INFM
DENSITY CORRELATION-FUNCTION
MOLECULAR-DYNAMICS
GLASS-TRANSITION
LENGTH SCALE
NONLINEAR SUSCEPTIBILITY
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/457669
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact