OBJECTIVE Glycated hemoglobin (HbA1c), used to monitor and diagnose diabetes, is influenced by average glycemia over a 2- to 3-month period. Genetic factors affecting expression, turnover, and abnormal glycation of hemoglobin could also be associated with increased levels of HbA1c. We aimed to identify such genetic factors and investigate the extent to which they influence diabetes classification based on HbA1c levels. RESEARCH DESIGN AND METHODS We studied associations with HbA1c in up to 46,368 nondiabetic adults of European descent from 23 genome-wide association studies (GWAS) and 8 cohorts with de novo genotyped single nucleotide polymorphisms (SNPs). We combined studies using inverse-variance meta-analysis and tested mediation by glycemia using conditional analyses. We estimated the global effect of HbA1c loci using a multilocus risk score, and used net reclassification to estimate genetic effects on diabetes screening. RESULTS Ten loci reached genome-wide significant association with HbA1c, including six new loci near FN3K (lead SNP/P value, rs1046896/P = 1.6 × 10-26), HFE (rs1800562/P = 2.6 × 10-20), TMPRSS6 (rs855791/P = 2.7 × 10-14), ANK1 (rs4737009/P = 6.1 × 10-12), SPTA1 (rs2779116/P = 2.8 × 10-9) and ATP11A/TUBGCP3 (rs7998202/P = 5.2 × 10-9), and four known HbA1c loci: HK1 (rs16926246/P = 3.1 × 10-54), MTNR1B (rs1387153/P = 4.0 × 10-11), GCK (rs1799884/P = 1.5 × 10-20) and G6PC2/ABCB11 (rs552976/P = 8.2 × 10-18). We show that associations with HbA1c are partly a function of hyperglycemia associated with 3 of the 10 loci (GCK, G6PC2 and MTNR1B). The seven nonglycemic loci accounted for a 0.19 (% HbA1c) difference between the extreme 10% tails of the risk score, and would reclassify ~2% of a general white population screened for diabetes with HbA1c. CONCLUSIONS GWAS identified 10 genetic loci reproducibly associated with HbA1c. Six are novel and seven map to loci where rarer variants cause hereditary anemias and iron storage disorders. Common variants at these loci likely influence HbA1c levels via erythrocyte biology, and confer a small but detectable reclassification of diabetes diagnosis by HbA1c.

Common variants at ten genomic loci influence hemoglobin A1C levels via glycemic and non-glycemic pathways.

Serena Sanna;Antonio Cao;Mariano Dei;Nazario Olla;Eleonora Porcu;Gianluca Usala;Manuela Uda;
2010

Abstract

OBJECTIVE Glycated hemoglobin (HbA1c), used to monitor and diagnose diabetes, is influenced by average glycemia over a 2- to 3-month period. Genetic factors affecting expression, turnover, and abnormal glycation of hemoglobin could also be associated with increased levels of HbA1c. We aimed to identify such genetic factors and investigate the extent to which they influence diabetes classification based on HbA1c levels. RESEARCH DESIGN AND METHODS We studied associations with HbA1c in up to 46,368 nondiabetic adults of European descent from 23 genome-wide association studies (GWAS) and 8 cohorts with de novo genotyped single nucleotide polymorphisms (SNPs). We combined studies using inverse-variance meta-analysis and tested mediation by glycemia using conditional analyses. We estimated the global effect of HbA1c loci using a multilocus risk score, and used net reclassification to estimate genetic effects on diabetes screening. RESULTS Ten loci reached genome-wide significant association with HbA1c, including six new loci near FN3K (lead SNP/P value, rs1046896/P = 1.6 × 10-26), HFE (rs1800562/P = 2.6 × 10-20), TMPRSS6 (rs855791/P = 2.7 × 10-14), ANK1 (rs4737009/P = 6.1 × 10-12), SPTA1 (rs2779116/P = 2.8 × 10-9) and ATP11A/TUBGCP3 (rs7998202/P = 5.2 × 10-9), and four known HbA1c loci: HK1 (rs16926246/P = 3.1 × 10-54), MTNR1B (rs1387153/P = 4.0 × 10-11), GCK (rs1799884/P = 1.5 × 10-20) and G6PC2/ABCB11 (rs552976/P = 8.2 × 10-18). We show that associations with HbA1c are partly a function of hyperglycemia associated with 3 of the 10 loci (GCK, G6PC2 and MTNR1B). The seven nonglycemic loci accounted for a 0.19 (% HbA1c) difference between the extreme 10% tails of the risk score, and would reclassify ~2% of a general white population screened for diabetes with HbA1c. CONCLUSIONS GWAS identified 10 genetic loci reproducibly associated with HbA1c. Six are novel and seven map to loci where rarer variants cause hereditary anemias and iron storage disorders. Common variants at these loci likely influence HbA1c levels via erythrocyte biology, and confer a small but detectable reclassification of diabetes diagnosis by HbA1c.
2010
Istituto di Ricerca Genetica e Biomedica - IRGB
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/45770
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 348
  • ???jsp.display-item.citation.isi??? 322
social impact