We discuss the effect of an adiabatic rotation on the phase separation between the superfluid and normal component of a trapped polarized Fermi gas at unitarity and zero temperature, under the assumption that quantized vortices are not formed. We show that the Chandrasekhar-Clogston limit n(down arrow)/n(up arrow) characterizing the local polarization in the normal phase at the interface is enhanced by the rotation as a consequence of the centrifugal effect. The density profiles (local and column integral) of the two spin species are calculated as a function of the angular velocity for different values of the polarization. The critical value of the angular velocity at which the superfluid exhibits a spontaneous quadrupole deformation is also calculated for the unpolarized case.
Unitary polarized Fermi gas under adiabatic rotation
Recati A;Stringari S
2008
Abstract
We discuss the effect of an adiabatic rotation on the phase separation between the superfluid and normal component of a trapped polarized Fermi gas at unitarity and zero temperature, under the assumption that quantized vortices are not formed. We show that the Chandrasekhar-Clogston limit n(down arrow)/n(up arrow) characterizing the local polarization in the normal phase at the interface is enhanced by the rotation as a consequence of the centrifugal effect. The density profiles (local and column integral) of the two spin species are calculated as a function of the angular velocity for different values of the polarization. The critical value of the angular velocity at which the superfluid exhibits a spontaneous quadrupole deformation is also calculated for the unpolarized case.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.