This paper presents polymer pixel printing for applications in chemoselective sensors where nanosecond laser direct transfer methods, with a triazene polymer (TP) acting as a Dynamic Release Layer (DRL), are used. A systematic study of laser fluence, donor film morphology and both single- and multiple-pixel deposition were optimized with the final goal to obtain continuous pixels of sensitive polymers, polyethylenimine (PEI) and polyisobutylene (PIB), on SAW surfaces. Morphology characterization after the laser transfer has been performed by Optical Microscopy and Scanning Electron Microscopy (SEM). The responses of the coated transducers were measured after deposition with different laser fluences and it was found that a fluence under 625 mJ/cm(2) was required in order to prevent damage of the interdigital transducers (IDT) of the sensor devices. The sensitivity of the polymer coated devices to acetone concentrations gives an indication that LIFT can be used for printing sensitive polymer pixels onto transducer devices.

Polymer pixel enhancement by laser induced forward transfer for sensor application

F Di Pietrantonio;M Benetti;E Verona
2010

Abstract

This paper presents polymer pixel printing for applications in chemoselective sensors where nanosecond laser direct transfer methods, with a triazene polymer (TP) acting as a Dynamic Release Layer (DRL), are used. A systematic study of laser fluence, donor film morphology and both single- and multiple-pixel deposition were optimized with the final goal to obtain continuous pixels of sensitive polymers, polyethylenimine (PEI) and polyisobutylene (PIB), on SAW surfaces. Morphology characterization after the laser transfer has been performed by Optical Microscopy and Scanning Electron Microscopy (SEM). The responses of the coated transducers were measured after deposition with different laser fluences and it was found that a fluence under 625 mJ/cm(2) was required in order to prevent damage of the interdigital transducers (IDT) of the sensor devices. The sensitivity of the polymer coated devices to acetone concentrations gives an indication that LIFT can be used for printing sensitive polymer pixels onto transducer devices.
2010
Istituto di Acustica e Sensoristica - IDASC - Sede Roma Tor Vergata
THIN-FILMS
EVAPORATION
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/457781
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact