We develop a thermoelectric generator based on catalytic combustion and operating in the low power range (up to 10 W). Considering the target of small-scale thermoelectric generators, the additive technique was chosen as an enabling technology to customize the different parts of the presented device. The generator consists of a hexagonal shaped combustion chamber coupled to commercial thermoelectric modules, water-cooled at the cold side. Thanks to the components design, heat transfer across each part of the system is properly driven enhancing the thermal management of the system. Moreover, in order to improve the overall efficiency, exhausts outlet is designed to promote heat recovery. The generator is characterized achieving an electrical power output close to 9 W in continuous regime, with an overall efficiency of 3.55%. The compact size, the light weight, the simple design and the reliability in continuous operating conditions are all promising features of the device described. Furthermore, the materials chosen for the device can suggest a way to fabricate cheaperheat exchangers, actually one of the main costs of the device development.

Additive fabrication and experimental validation of a lightweight thermoelectric generator

Carlo Fanciulli
Primo
;
Hossein Abedi;Adelaide Nespoli
;
Roberto Donde';Francesca Migliorini;Francesca Passaretti;Silvana De Iuliis
Ultimo
2023

Abstract

We develop a thermoelectric generator based on catalytic combustion and operating in the low power range (up to 10 W). Considering the target of small-scale thermoelectric generators, the additive technique was chosen as an enabling technology to customize the different parts of the presented device. The generator consists of a hexagonal shaped combustion chamber coupled to commercial thermoelectric modules, water-cooled at the cold side. Thanks to the components design, heat transfer across each part of the system is properly driven enhancing the thermal management of the system. Moreover, in order to improve the overall efficiency, exhausts outlet is designed to promote heat recovery. The generator is characterized achieving an electrical power output close to 9 W in continuous regime, with an overall efficiency of 3.55%. The compact size, the light weight, the simple design and the reliability in continuous operating conditions are all promising features of the device described. Furthermore, the materials chosen for the device can suggest a way to fabricate cheaperheat exchangers, actually one of the main costs of the device development.
2023
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia (ICMATE) - Sede Secondaria Lecco
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia (ICMATE) - Sede Secondaria Milano
Thermoelectric Generator
Additive Manufacturing
Catalytic Combustion
File in questo prodotto:
File Dimensione Formato  
Fanciulli et al. 2023 - Additive fabrication and experimental validation of a lightweight TEG.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.8 MB
Formato Adobe PDF
3.8 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/458056
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact