Large-area, artificial floating marine litter (FML) targets were deployed during a controlled field experiment and data acquisition campaign: the Plastic Litter Project 2021. A set of 22 Sentinel-2 images, along with UAS data and ancillary measurements were acquired. Spectral analysis of the FML and natural debris (wooden planks) targets was performed, along with spectral comparison and separability analysis between FML and other floating materials such as marine mucilage and pollen. The effects of biofouling and submersion on the spectral signal of FML were also investigated under realistic field conditions. Detection of FML is performed through a partial unmixing methodology. Floating substances such as pollen exhibit similar spectral characteristics to FML, and are difficult to differentiate. Biofouling is shown to affect the magnitude and shape of the FML signal mainly in the RGB bands, with less significant effect on the infrared part of the spectrum. Submersion affects the FML signal throughout the range of the Sentinel-2 satellite, with the most significant effect in the NIR part of the spectrum. Sentinel-2 detection of FML can be successfully performed through a partial unmixing methodology for FML concentrations with abundance fractions of 20%, under reasonable conditions.
Sentinel-2 Detection of Floating Marine Litter Targets with Partial Spectral Unmixing and Spectral Comparison with Other Floating Materials (Plastic Litter Project 2021)
Suaria Giuseppe;Aliani Stefano;
2022
Abstract
Large-area, artificial floating marine litter (FML) targets were deployed during a controlled field experiment and data acquisition campaign: the Plastic Litter Project 2021. A set of 22 Sentinel-2 images, along with UAS data and ancillary measurements were acquired. Spectral analysis of the FML and natural debris (wooden planks) targets was performed, along with spectral comparison and separability analysis between FML and other floating materials such as marine mucilage and pollen. The effects of biofouling and submersion on the spectral signal of FML were also investigated under realistic field conditions. Detection of FML is performed through a partial unmixing methodology. Floating substances such as pollen exhibit similar spectral characteristics to FML, and are difficult to differentiate. Biofouling is shown to affect the magnitude and shape of the FML signal mainly in the RGB bands, with less significant effect on the infrared part of the spectrum. Submersion affects the FML signal throughout the range of the Sentinel-2 satellite, with the most significant effect in the NIR part of the spectrum. Sentinel-2 detection of FML can be successfully performed through a partial unmixing methodology for FML concentrations with abundance fractions of 20%, under reasonable conditions.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.