Sampling equilibrium ensembles of dense polymer mixtures is a paradigmatically hard problem in computational physics, even in lattice-based models. Here, we develop a formalism based on interacting binary tensors that allows for tackling this problem using quantum annealing machines. Our approach is general in that properties such as self-Avoidance, branching, and looping can all be specified in terms of quadratic interactions of the tensors. Microstates' realizations of different lattice polymer ensembles are then seamlessly generated by solving suitable discrete energy-minimization problems. This approach enables us to capitalize on the strengths of quantum annealing machines, as we demonstrate by sampling polymer mixtures from low to high densities, using the D-Wave quantum annealer. Our systematic approach offers a promising avenue to harness the rapid development of quantum machines for sampling discrete models of filamentous soft-matter systems.

Polymer Physics by Quantum Computing

2021

Abstract

Sampling equilibrium ensembles of dense polymer mixtures is a paradigmatically hard problem in computational physics, even in lattice-based models. Here, we develop a formalism based on interacting binary tensors that allows for tackling this problem using quantum annealing machines. Our approach is general in that properties such as self-Avoidance, branching, and looping can all be specified in terms of quadratic interactions of the tensors. Microstates' realizations of different lattice polymer ensembles are then seamlessly generated by solving suitable discrete energy-minimization problems. This approach enables us to capitalize on the strengths of quantum annealing machines, as we demonstrate by sampling polymer mixtures from low to high densities, using the D-Wave quantum annealer. Our systematic approach offers a promising avenue to harness the rapid development of quantum machines for sampling discrete models of filamentous soft-matter systems.
2021
Istituto Nazionale di Ottica - INO
SELF-AVOIDING WALKS; MONTE-CARLO; RING POLYMERS; SIMULATIONS; ALGORITHM
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/458196
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 16
social impact