The last decade has witnessed massive advancements in high-throughput techniques capable of producing increasingly complex gene expression datasets across time and space and at the resolution of single cells. Yet, the large volume of big data available and the complexity of experimental designs hamper an easy understanding and effective communication of the results.We present expressyouRcell, an easy-to-use R package to map the multi-dimensional variations of transcript and protein levels in dynamic cell pictographs. expressyouRcell visualizes gene expression variations as pictographic representations of cell-type thematic maps. expressyouRcell visually reduces the complexity of displaying gene expression and protein level changes across multiple measurements (time points or single-cell trajectories) by generating dynamic representations of cellular pictographs.We applied expressyouRcell to single cell, bulk RNA sequencing (RNA-seq), and proteomics datasets, demonstrating its flexibility and usability in the visualization of complex variations in gene expression. Our approach improves the standard quantitative interpretation and communication of relevant results.

Visualizing gene expression changes in time, space, and single cells with expressyouRcell

Paganin Martina;Lauria Fabio;Viero Gabriella
2023

Abstract

The last decade has witnessed massive advancements in high-throughput techniques capable of producing increasingly complex gene expression datasets across time and space and at the resolution of single cells. Yet, the large volume of big data available and the complexity of experimental designs hamper an easy understanding and effective communication of the results.We present expressyouRcell, an easy-to-use R package to map the multi-dimensional variations of transcript and protein levels in dynamic cell pictographs. expressyouRcell visualizes gene expression variations as pictographic representations of cell-type thematic maps. expressyouRcell visually reduces the complexity of displaying gene expression and protein level changes across multiple measurements (time points or single-cell trajectories) by generating dynamic representations of cellular pictographs.We applied expressyouRcell to single cell, bulk RNA sequencing (RNA-seq), and proteomics datasets, demonstrating its flexibility and usability in the visualization of complex variations in gene expression. Our approach improves the standard quantitative interpretation and communication of relevant results.
2023
Istituto di Biofisica - IBF
Protein
File in questo prodotto:
File Dimensione Formato  
prod_486446-doc_201804.pdf

accesso aperto

Descrizione: Visualizing gene expression changes in time, space, and single cells with expressyouRcell
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 4.62 MB
Formato Adobe PDF
4.62 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/458217
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact