Knowledge of the spatial distribution of European chestnut (Castanea sativa Mill.) cultivar diversity is essential for managing and conserving the genetic resources of this fruit tree species in Southern Italy. To this goal, the present work investigated the feasibility of mapping, through spatial representation, the distribution of genetic diversity of traditional chestnut varieties in the area of the Roccamonfina Regional Park in the Campania Region. After Principal Coordinates Analysis (PCoA) of molecular-genetic data, chestnuts formed varietal groups in a leopard spot on PCoA plots with a relatively high degree of genetic diversity. Successively, a Geographic Information System (GIS) tool utilized these molecular-genetic data to create a genetic divergence surface by geospatial interpolation on the geographic map of the Regional Park corresponding to each chestnut variety. The regions containing more biodiversity richness resulted in differentially colored from those containing cultivars less genetically distant from each other; thus, the area in study was consistently colored according to the allelic richness as evaluated by molecular-genetic markers. The combined use of tools for molecular and spatial analysis allowed for drafting genetic landscapes with the aim of extracting useful information for the safeguarding of the chestnut biodiversity at risk.

Pilot Study on the Geographical Mapping of Genetic Diversity among European Chestnut (Castanea sativa Mill.) Cultivars in Southern Italy

Marina Maura Calandrelli;Luigi De Masi
2023

Abstract

Knowledge of the spatial distribution of European chestnut (Castanea sativa Mill.) cultivar diversity is essential for managing and conserving the genetic resources of this fruit tree species in Southern Italy. To this goal, the present work investigated the feasibility of mapping, through spatial representation, the distribution of genetic diversity of traditional chestnut varieties in the area of the Roccamonfina Regional Park in the Campania Region. After Principal Coordinates Analysis (PCoA) of molecular-genetic data, chestnuts formed varietal groups in a leopard spot on PCoA plots with a relatively high degree of genetic diversity. Successively, a Geographic Information System (GIS) tool utilized these molecular-genetic data to create a genetic divergence surface by geospatial interpolation on the geographic map of the Regional Park corresponding to each chestnut variety. The regions containing more biodiversity richness resulted in differentially colored from those containing cultivars less genetically distant from each other; thus, the area in study was consistently colored according to the allelic richness as evaluated by molecular-genetic markers. The combined use of tools for molecular and spatial analysis allowed for drafting genetic landscapes with the aim of extracting useful information for the safeguarding of the chestnut biodiversity at risk.
2023
Istituto di Bioscienze e Biorisorse - IBBR - Sede Secondaria Portici
Istituto di Ricerca sugli Ecosistemi Terrestri - IRET - Sede Secondaria Napoli
Agrobiodiversity
genetic distance
DNA analysis
Geographic Information System (GIS)
landscape genetic
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/458860
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact