Lightning is an important threat to life and properties and its forecast is important for several applications. In this paper, we show the performance of the "dynamic lightning scheme" for next-day total strokes forecast. The predictions were compared against strokes recorded by a ground observational network for a forecast period spanning one year. Specifically, a total of 162 case studies were selected between 1 March 2020 and 28 February 2021, characterized by at least 3000 observed strokes over Italy. The events span a broad range of lightning intensity from about 3000 to 600,000 strokes in one day: 69 cases occurred in summer, 46 in fall, 18 in winter, and 29 in spring. The meteorological driver was the Weather Research and Forecasting (WRF) model (version 4.1) and we focused on the next-day forecast. Strokes were simulated by adding three extra variables to WRF, namely, the potential energies for positive and negative cloud to ground flashes and intracloud strokes. Each potential energy is advected by WRF, it is built by the electrification processes occurring into the cloud, and it is dissipated by lightning. Observed strokes were remapped onto the WRF model grid with a 3 km horizontal resolution for comparison with the strokes forecast. Results are discussed for the whole year and for different seasons. Moreover, statistics are presented for the land and the sea. In general, the results of this study show that lightning forecast with the dynamic lightning scheme and WRF model was successful for Italy; nevertheless, a careful inspection of forecast performance is necessary for tuning the scheme. This tuning is dependent on the season. A numerical experiment changing the microphysics scheme used in WRF shows the sensitivity of the results according to the choice of the microphysics scheme.

A Year-Long Total Lightning Forecast over Italy with a Dynamic Lightning Scheme and WRF

Federico S
;
Torcasio RC;Dietrich S
2022

Abstract

Lightning is an important threat to life and properties and its forecast is important for several applications. In this paper, we show the performance of the "dynamic lightning scheme" for next-day total strokes forecast. The predictions were compared against strokes recorded by a ground observational network for a forecast period spanning one year. Specifically, a total of 162 case studies were selected between 1 March 2020 and 28 February 2021, characterized by at least 3000 observed strokes over Italy. The events span a broad range of lightning intensity from about 3000 to 600,000 strokes in one day: 69 cases occurred in summer, 46 in fall, 18 in winter, and 29 in spring. The meteorological driver was the Weather Research and Forecasting (WRF) model (version 4.1) and we focused on the next-day forecast. Strokes were simulated by adding three extra variables to WRF, namely, the potential energies for positive and negative cloud to ground flashes and intracloud strokes. Each potential energy is advected by WRF, it is built by the electrification processes occurring into the cloud, and it is dissipated by lightning. Observed strokes were remapped onto the WRF model grid with a 3 km horizontal resolution for comparison with the strokes forecast. Results are discussed for the whole year and for different seasons. Moreover, statistics are presented for the land and the sea. In general, the results of this study show that lightning forecast with the dynamic lightning scheme and WRF model was successful for Italy; nevertheless, a careful inspection of forecast performance is necessary for tuning the scheme. This tuning is dependent on the season. A numerical experiment changing the microphysics scheme used in WRF shows the sensitivity of the results according to the choice of the microphysics scheme.
2022
Istituto di Scienze dell'Atmosfera e del Clima - ISAC - Sede Secondaria Roma
ightning; forecast of convective environments; statistical scores; WRF
File in questo prodotto:
File Dimensione Formato  
remotesensing-14-03244.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 6.58 MB
Formato Adobe PDF
6.58 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/458909
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact