Advanced nanoscale antimicrobials, originated from the combination of noble metal nanoparticles (NPs) with conventional antimicrobial drugs, are considered the next generation of antimicrobial agents. Therefore, there is an increasing demand for rapid, ecofriendly, and relatively inexpensive synthetic approaches for the preparation of nontoxic metallic nanostructures endowed with unique physicochemical properties. Recently, we have proposed a straightforward synthetic strategy that exploits the properties of polymeric ?-cyclodextrin (PolyCD) to act as both the reducing and stabilizing agent to produce monodispersed and stable goldbased NPs either as monometallic (nanoG) structures or core-shell bimetallic (nanoGS) architectures with an external silver layer. Here, we describe the preparation of a supramolecular assembly between nanoGS and pentamidine, an antileishmanial drug endowed with a wide range of therapeutic properties (i.e., antimicrobial, anti-inflammatory, and anticancer). The physicochemical characterization of the supramolecular assembly (nanoGSP) in terms of size and colloidal stability was investigated by complemen tstabilization of metal NPs was investigated for the ary spectroscopic techniques, such as UV-vis, ?-potential, and dynamic light scattering (DLS). Furthermore, the role of PolyCD during the reduction/first time by NMR spectroscopy.

Supramolecular assembly of pentamidine and polymeric cyclodextrin bimetallic core-shell nanoarchitectures

Cordaro M;
2022

Abstract

Advanced nanoscale antimicrobials, originated from the combination of noble metal nanoparticles (NPs) with conventional antimicrobial drugs, are considered the next generation of antimicrobial agents. Therefore, there is an increasing demand for rapid, ecofriendly, and relatively inexpensive synthetic approaches for the preparation of nontoxic metallic nanostructures endowed with unique physicochemical properties. Recently, we have proposed a straightforward synthetic strategy that exploits the properties of polymeric ?-cyclodextrin (PolyCD) to act as both the reducing and stabilizing agent to produce monodispersed and stable goldbased NPs either as monometallic (nanoG) structures or core-shell bimetallic (nanoGS) architectures with an external silver layer. Here, we describe the preparation of a supramolecular assembly between nanoGS and pentamidine, an antileishmanial drug endowed with a wide range of therapeutic properties (i.e., antimicrobial, anti-inflammatory, and anticancer). The physicochemical characterization of the supramolecular assembly (nanoGSP) in terms of size and colloidal stability was investigated by complemen tstabilization of metal NPs was investigated for the ary spectroscopic techniques, such as UV-vis, ?-potential, and dynamic light scattering (DLS). Furthermore, the role of PolyCD during the reduction/first time by NMR spectroscopy.
2022
Istituto di Tecnologie Avanzate per l'Energia - ITAE
[object Object
[object Object
[object Object
[object Object
[object Object
[object Object
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/458921
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact