Dissociative photoionization of quinoline induced by vacuum ultraviolet radiation is investigated using photoelectron-photoion coincidence spectroscopy. Branching ratios of all the detectable fragment ions are measured as a function of internal energy ranging from 2 to 30 eV. A specific generation hierarchy is observed in the breakdown curves of a set of dissociation channels. Moreover, a careful comparison of the breakdown curves of fragments among the successive generations allowed to establish a decay sequence in the fragmentation of quinoline cation. This enabled us to revisit and refine the understanding of the first generation decay and reassign the origin of a few of the higher generation decay products of quinoline cation. With the help of the accompanying computational work (reported concurrently), we have demonstrated the dominance of two different HCN elimination pathways over previously interpreted mechanisms. For the first time, a specific pathway for acetylene elimination is identified in quinoline(+) and the role of isomerization in both acetylene as well as hydrogen cyanide loss is also demonstrated. The experiment also established that the acetylene elimination exclusively occurs from the non-nitrogen containing rings of quinoline cation. The formation of a few astronomically important species is also discussed. Published under an exclusive license by AIP Publishing.

Comprehensive survey of dissociative photoionization of quinoline by PEPICO experiments

Avaldi Lorenzo;Bolognesi Paola;
2022

Abstract

Dissociative photoionization of quinoline induced by vacuum ultraviolet radiation is investigated using photoelectron-photoion coincidence spectroscopy. Branching ratios of all the detectable fragment ions are measured as a function of internal energy ranging from 2 to 30 eV. A specific generation hierarchy is observed in the breakdown curves of a set of dissociation channels. Moreover, a careful comparison of the breakdown curves of fragments among the successive generations allowed to establish a decay sequence in the fragmentation of quinoline cation. This enabled us to revisit and refine the understanding of the first generation decay and reassign the origin of a few of the higher generation decay products of quinoline cation. With the help of the accompanying computational work (reported concurrently), we have demonstrated the dominance of two different HCN elimination pathways over previously interpreted mechanisms. For the first time, a specific pathway for acetylene elimination is identified in quinoline(+) and the role of isomerization in both acetylene as well as hydrogen cyanide loss is also demonstrated. The experiment also established that the acetylene elimination exclusively occurs from the non-nitrogen containing rings of quinoline cation. The formation of a few astronomically important species is also discussed. Published under an exclusive license by AIP Publishing.
2022
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
Branching ratio; Breakdown curves; Coincidence spectroscopy; Decay products; Dissociation channels; Dissociative photoionization; Fragment ions; Internal energies; Photoelectron-photoion coincidence; Vacuum ultraviolet radiation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/459248
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact