A novel method to detect the active form of NF- B, a transcription factor regulating a battery of inflammatory genes and playing a fundamental role in the development of numerous pathological states, has been developed. In the present work, we used fluorescence resonance energy transfer (FRET) to study DNA-protein binding interaction taking place between double-strand (ds) DNA immobilized in a glass capillary wall and p50 proteins. For this purpose, we developed a regenerable FRET-based system comprising of a single strand (ss) DNA with auto-complementary sequence that is end-labeled with Cy5 dye and is highly specific for p50 proteins. The proteins were labeled with a Black Hole Quencher (BHQ-3) to be used as FRET pair. The interaction of p50/p50 homodimer active form with its DNA binding site was demonstrated by both electrophoretic mobility shift assays and FRET studies. These preliminary results demonstrated the feasibility of the FRET-based DNA technique to detect the active form of NF- B protein with 90% detection efficiency. In addition, we show that the system is stable and highly regenerable.

FRET-based protein-DNA binding assay for detection of active NF- B

Citti L;
2006

Abstract

A novel method to detect the active form of NF- B, a transcription factor regulating a battery of inflammatory genes and playing a fundamental role in the development of numerous pathological states, has been developed. In the present work, we used fluorescence resonance energy transfer (FRET) to study DNA-protein binding interaction taking place between double-strand (ds) DNA immobilized in a glass capillary wall and p50 proteins. For this purpose, we developed a regenerable FRET-based system comprising of a single strand (ss) DNA with auto-complementary sequence that is end-labeled with Cy5 dye and is highly specific for p50 proteins. The proteins were labeled with a Black Hole Quencher (BHQ-3) to be used as FRET pair. The interaction of p50/p50 homodimer active form with its DNA binding site was demonstrated by both electrophoretic mobility shift assays and FRET studies. These preliminary results demonstrated the feasibility of the FRET-based DNA technique to detect the active form of NF- B protein with 90% detection efficiency. In addition, we show that the system is stable and highly regenerable.
2006
Istituto di Fisiologia Clinica - IFC
NF- kB
File in questo prodotto:
File Dimensione Formato  
prod_23818-doc_39424.pdf

non disponibili

Descrizione: articolo
Dimensione 281.54 kB
Formato Adobe PDF
281.54 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/45948
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact