A wavelet analysis has been applied, for the first time, to 3-year high-frequency field observations of bio-optical properties (i.e. chlorophyll-fluorescence, beam attenuation and backscattering coefficients) in the northwestern Mediterranean Sea (BOUSSOLE site), in order to identify their dominant temporal patterns and evolution. A cross-wavelet and coherence analysis has also been applied to paired bio-optical coefficients time-series at the BOUSSOLE site, which allows identifying the temporal relationship between the cycles of the bio-optical properties. Annual, six- and four-month, intra-seasonal (i.e., mid- and short-terms) cycles are identified from the time-series analysis. The periodicities of chlorophyll-fluorescence, beam attenuation and particulate back-scattering coefficients correlate well at different temporal scales and specific seasons. At annual, six- and four-month scales, different bio-optical properties follow rather similar patterns, likely driven by physical forcing. Intra-seasonal variability consists in both mid- and short-term variations. The former dominates during the winter and are related to episodic bloom events, while the latter variations (i.e., diel) prevail during summer, in a stratified water column.

Discerning dominant temporal patterns of bio-optical properties in the northwestern Mediterranean Sea (BOUSSOLE site)

Bellacicco M;
2019

Abstract

A wavelet analysis has been applied, for the first time, to 3-year high-frequency field observations of bio-optical properties (i.e. chlorophyll-fluorescence, beam attenuation and backscattering coefficients) in the northwestern Mediterranean Sea (BOUSSOLE site), in order to identify their dominant temporal patterns and evolution. A cross-wavelet and coherence analysis has also been applied to paired bio-optical coefficients time-series at the BOUSSOLE site, which allows identifying the temporal relationship between the cycles of the bio-optical properties. Annual, six- and four-month, intra-seasonal (i.e., mid- and short-terms) cycles are identified from the time-series analysis. The periodicities of chlorophyll-fluorescence, beam attenuation and particulate back-scattering coefficients correlate well at different temporal scales and specific seasons. At annual, six- and four-month scales, different bio-optical properties follow rather similar patterns, likely driven by physical forcing. Intra-seasonal variability consists in both mid- and short-term variations. The former dominates during the winter and are related to episodic bloom events, while the latter variations (i.e., diel) prevail during summer, in a stratified water column.
2019
Phenology
Bio-optical properties
Time-series analysis
Wavelet analysis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/459596
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 3
social impact