The photon upconversion based on sensitized triplet-triplet annihilation (sTTA-UC) is a spin-flip mechanism exploited to recover the energy stored on dark triplet states in conjugated systems. In this process, a high-energy fluorescent singlet is created through the collision and fusion of two low-energy triplets belonging to different diffusing molecules. Its high yield in solution under low excitation intensity and noncoherent light highlighted the huge potential of sTTA-UC to provide a breakthrough in solar technologies. However, its diffusion-limited nature restrains its efficiency in the solid state. To overcome this issue, we propose a single-molecule system that is able to host simultaneously more than one triplet, thus enabling a diffusion-free intramolecular TTA. We obtain the first direct demonstration of intramolecular triplet fusion by tailored photoluminescence spectroscopy experiments, thus opening the way to realize a new family of single-molecule upconverters with huge potential in solar and lighting technologies by accessing the natural triplets' energy reservoir.
Diffusion-Free Intramolecular Triplet-Triplet Annihilation in Engineered Conjugated Chromophores for Sensitized Photon Upconversion
Mattioli Giuseppe;
2022
Abstract
The photon upconversion based on sensitized triplet-triplet annihilation (sTTA-UC) is a spin-flip mechanism exploited to recover the energy stored on dark triplet states in conjugated systems. In this process, a high-energy fluorescent singlet is created through the collision and fusion of two low-energy triplets belonging to different diffusing molecules. Its high yield in solution under low excitation intensity and noncoherent light highlighted the huge potential of sTTA-UC to provide a breakthrough in solar technologies. However, its diffusion-limited nature restrains its efficiency in the solid state. To overcome this issue, we propose a single-molecule system that is able to host simultaneously more than one triplet, thus enabling a diffusion-free intramolecular TTA. We obtain the first direct demonstration of intramolecular triplet fusion by tailored photoluminescence spectroscopy experiments, thus opening the way to realize a new family of single-molecule upconverters with huge potential in solar and lighting technologies by accessing the natural triplets' energy reservoir.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.