Novel yttrium-doped CeO2, MnOx, and CeMnOx composites are investigated as catalysts for low-temperature NH3-SCR. The study involves the preparation of unmodified oxide supports using a citrate method followed by modification with Y (2 wt.%) using two approaches, including the one-pot citrate method and incipient wetness impregnation of undoped oxides. The NH3-SCR reaction is studied in a fixed-bed quartz reactor to test the ability of the prepared catalysts in NO reduction. The gas reaction mixture consists of 800 ppm NO, 800 ppm NH3, 10 vol.% O2 and He as a balance gas at a WHSV of 25,000 mL g-1 h-1. The results indicate that undoped CeMnOx mixed oxide exhibits significantly higher deNOx performance compared with undoped and Y-doped MnOx and CeO2 catalysts. Indeed, yttrium presence in CeMnOx promotes the competitive NH3-SCO reaction, reducing the amount of NH3 available for NO reduction and lowering the catalyst activity. Furthermore, the physical-chemical properties of the prepared catalysts are studied using nitrogen adsorption/desorption, XRD, Raman spectroscopy, temperature-programmed reduction with hydrogen, and temperature-programmed desorption of ammonia. This study presents a promising approach to enhancing the performance of NH3-SCR catalysts at low temperatures that can have significant implications for reducing NO emissions.

Influence of Y Doping on Catalytic Activity of CeO2, MnOx, and CeMnOx Catalysts for Selective Catalytic Reduction of NO by NH3

Eleonora La Greca;Giuseppe Pantaleo;Luca Consentino;Leonarda Francesca Liotta
2023

Abstract

Novel yttrium-doped CeO2, MnOx, and CeMnOx composites are investigated as catalysts for low-temperature NH3-SCR. The study involves the preparation of unmodified oxide supports using a citrate method followed by modification with Y (2 wt.%) using two approaches, including the one-pot citrate method and incipient wetness impregnation of undoped oxides. The NH3-SCR reaction is studied in a fixed-bed quartz reactor to test the ability of the prepared catalysts in NO reduction. The gas reaction mixture consists of 800 ppm NO, 800 ppm NH3, 10 vol.% O2 and He as a balance gas at a WHSV of 25,000 mL g-1 h-1. The results indicate that undoped CeMnOx mixed oxide exhibits significantly higher deNOx performance compared with undoped and Y-doped MnOx and CeO2 catalysts. Indeed, yttrium presence in CeMnOx promotes the competitive NH3-SCO reaction, reducing the amount of NH3 available for NO reduction and lowering the catalyst activity. Furthermore, the physical-chemical properties of the prepared catalysts are studied using nitrogen adsorption/desorption, XRD, Raman spectroscopy, temperature-programmed reduction with hydrogen, and temperature-programmed desorption of ammonia. This study presents a promising approach to enhancing the performance of NH3-SCR catalysts at low temperatures that can have significant implications for reducing NO emissions.
2023
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN
NO; selective catalytic reduction; manganese oxide; cerium oxide; yttrium
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/460043
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact