Dielectric microspacers (DMS) are a novel micro-technology that can be used to achieve a fixed micron/sub-micron gap distance between two separated surfaces, such as the emitter (cathode) and the PV cell (anode) of a near-field thermophotovoltaic converter (TPV). One of the system's challenges is the flow of undesirable excess thermal energy from the cathode to the anode that might cause the PV cell to overheat. This work investigates the possibility of integrating this technology into a hybrid thermionic-photovoltaic (TIPV) converter operating at ultra-high temperatures (>1000 degrees C) without any risk of collector's overheating, which might lead to its mechanical failure. A steady-state 3-D CFD model was developed in Fluent v17.1 solver to assess the system's thermal behavior when the two electrodes were separated by a distance of 8-10 mu m. The heat transfer through conduction across the system components and the net photon/electron flux between the two electrodes were simulated. Different cathode temperatures within the range of 1500-2500 K and various DMS shapes (capillary, cylindrical), patterns (e.g., ring-shaped) and sizes were studied. Results show that thermal performance is not affected by the DMS pattern, even for thermal conductivities of 80 W/(m center dot K), whereas the possibility of mechanical failure is considerable for T-cathode > 2000 K.

Thermal Assessment of Dielectric Microspacer Technology Using an Advanced Three-Dimensional Simulation Model

Bellucci, Alessandro;Trucchi, Daniele Maria;
2023

Abstract

Dielectric microspacers (DMS) are a novel micro-technology that can be used to achieve a fixed micron/sub-micron gap distance between two separated surfaces, such as the emitter (cathode) and the PV cell (anode) of a near-field thermophotovoltaic converter (TPV). One of the system's challenges is the flow of undesirable excess thermal energy from the cathode to the anode that might cause the PV cell to overheat. This work investigates the possibility of integrating this technology into a hybrid thermionic-photovoltaic (TIPV) converter operating at ultra-high temperatures (>1000 degrees C) without any risk of collector's overheating, which might lead to its mechanical failure. A steady-state 3-D CFD model was developed in Fluent v17.1 solver to assess the system's thermal behavior when the two electrodes were separated by a distance of 8-10 mu m. The heat transfer through conduction across the system components and the net photon/electron flux between the two electrodes were simulated. Different cathode temperatures within the range of 1500-2500 K and various DMS shapes (capillary, cylindrical), patterns (e.g., ring-shaped) and sizes were studied. Results show that thermal performance is not affected by the DMS pattern, even for thermal conductivities of 80 W/(m center dot K), whereas the possibility of mechanical failure is considerable for T-cathode > 2000 K.
2023
Istituto di Struttura della Materia - ISM - Sede Secondaria Montelibretti
dielectric microspacers
3D CFD analysis
thermal analysis
TIPV converter
File in questo prodotto:
File Dimensione Formato  
prod_481693-doc_198099.pdf

accesso aperto

Descrizione: Paper
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 7.67 MB
Formato Adobe PDF
7.67 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/460052
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact