In this study, artificial neural networks are adopted to perform multi-step predictions of the power consumed by the refiner of a thermo-mechanical pulping process specialized in medium-density fiberboard production. In this way, the obtained model can be integrated within a model-based control. The refining process is characterized by a large number of variables, and artificial neural networks are a well-established methodology for multivariate data processing, able to identify the non-linear hidden relationship between monitored variables. Both a Long Short-Term Memory network, with stability guarantees, and a Transformer one are implemented due to their ability to model the evolution of dynamical systems. Simulation results prove both models' multi-step prediction capabilities.
Neural Network Modeling of the Refining Motor Load for Medium-Density Fibreboard Production
Lorenzo Tuissi;Daniele Ravasio;Stefano Spinelli;Andrea Ballarino
2023
Abstract
In this study, artificial neural networks are adopted to perform multi-step predictions of the power consumed by the refiner of a thermo-mechanical pulping process specialized in medium-density fiberboard production. In this way, the obtained model can be integrated within a model-based control. The refining process is characterized by a large number of variables, and artificial neural networks are a well-established methodology for multivariate data processing, able to identify the non-linear hidden relationship between monitored variables. Both a Long Short-Term Memory network, with stability guarantees, and a Transformer one are implemented due to their ability to model the evolution of dynamical systems. Simulation results prove both models' multi-step prediction capabilities.| File | Dimensione | Formato | |
|---|---|---|---|
|
Neural_Network_Modeling_of_the_Refining_Motor_Load_for_Medium-Density_Fibreboard_Production.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.96 MB
Formato
Adobe PDF
|
1.96 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


