Understanding the mechanisms controlling the early (fresh) and long-term (hardened) hydration of one-part alkali-activated slags (AAS) is key to extend their use as low CO substitutes for ordinary Portland cement (OPC). Their "just add water" use makes them easier and less hazardous to manipulate than the more studied two-part ones. This is due to the absence of liquid alkaline activators, which are environmentally and energy demanding. In this work, numerous experimental techniques have been linked to obtain a comprehensive physico-chemical characterization of a one-part AAS activated with NaCO and Ca(OH) powders at several water to solid ratios (w/s). Calorimetry and pH/conductivity measurements describe the functioning of the activators immediately after contact with water. Early reactivity is characterized through in situ X-ray powder diffraction (XRPD) and small amplitude oscillatory shear (SAOS) rheology, which reveal a rapid precipitation of nanometric hydration products (nano-C-A-S-H), which results in a continuous increase in the paste cohesivity until setting. Moreover, SAOS shows that rejuvenating the paste by means of shearing (performed externally to the rheometer in this study) is enough to restore the initial cohesion (i.e., workability) for long time spans until setting occurs. The long-term hydration is characterized by ex situ XRPD on aged AAS pastes, in parallel with mechanical testing on AAS mortar. A correlation can be observed between the amount of nano-C-A-S-H and the increase in compressive strength. Overall, this formulation shows satisfactory fresh and solid properties, demonstrating suitability for low- and normal-strength applications.
Structure-function relationship during the early and long-term hydration of one-part alkali-activated slag
Dal Sasso Gregorio;
2023
Abstract
Understanding the mechanisms controlling the early (fresh) and long-term (hardened) hydration of one-part alkali-activated slags (AAS) is key to extend their use as low CO substitutes for ordinary Portland cement (OPC). Their "just add water" use makes them easier and less hazardous to manipulate than the more studied two-part ones. This is due to the absence of liquid alkaline activators, which are environmentally and energy demanding. In this work, numerous experimental techniques have been linked to obtain a comprehensive physico-chemical characterization of a one-part AAS activated with NaCO and Ca(OH) powders at several water to solid ratios (w/s). Calorimetry and pH/conductivity measurements describe the functioning of the activators immediately after contact with water. Early reactivity is characterized through in situ X-ray powder diffraction (XRPD) and small amplitude oscillatory shear (SAOS) rheology, which reveal a rapid precipitation of nanometric hydration products (nano-C-A-S-H), which results in a continuous increase in the paste cohesivity until setting. Moreover, SAOS shows that rejuvenating the paste by means of shearing (performed externally to the rheometer in this study) is enough to restore the initial cohesion (i.e., workability) for long time spans until setting occurs. The long-term hydration is characterized by ex situ XRPD on aged AAS pastes, in parallel with mechanical testing on AAS mortar. A correlation can be observed between the amount of nano-C-A-S-H and the increase in compressive strength. Overall, this formulation shows satisfactory fresh and solid properties, demonstrating suitability for low- and normal-strength applications.File | Dimensione | Formato | |
---|---|---|---|
Journal of the American Ceramic Society - 2023 - Liberto - Structure function relationship during the early and long‐term.pdf
accesso aperto
Descrizione: Structure–function relationship during the early and long-term hydration of one-part alkali-activated slag
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.48 MB
Formato
Adobe PDF
|
1.48 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.