Pyranine (HPTS) is a remarkably interesting pH-sensitive dye that has been used for plenty of applications. Its high quantum yield and extremely sensitive ratiometric fluorescence against pH change makes it a very favorable for pH-sensing applications and the development of pH nano-/microsensors. However, its strong negative charge and lack of easily modifiable functional groups makes it difficult to use with charged substrates such as silica. This study reports a methodology for noncovalent HPTS immobilization on silica microparticles that considers the retention of pH sensitivity as well as the long-term stability of the pH microsensors. The study emphasizes the importance of surface charge for governing the sensitivity of the immobilized HPTS dye molecules on silica microparticles. The importance of the immobilization methodology, which preserves the sensitivity and stability of the microsensors, is also assessed.

Highly Sensitive Fluorescent pH Microsensors Based on the Ratiometric Dye Pyranine Immobilized on Silica Microparticles

Chandra Anil;Prasad Saumya;Iuele Helena;Colella Francesco;Rizzo Riccardo;D'Amone Eliana;Gigli Giuseppe;del Mercato Loretta L
2021

Abstract

Pyranine (HPTS) is a remarkably interesting pH-sensitive dye that has been used for plenty of applications. Its high quantum yield and extremely sensitive ratiometric fluorescence against pH change makes it a very favorable for pH-sensing applications and the development of pH nano-/microsensors. However, its strong negative charge and lack of easily modifiable functional groups makes it difficult to use with charged substrates such as silica. This study reports a methodology for noncovalent HPTS immobilization on silica microparticles that considers the retention of pH sensitivity as well as the long-term stability of the pH microsensors. The study emphasizes the importance of surface charge for governing the sensitivity of the immobilized HPTS dye molecules on silica microparticles. The importance of the immobilization methodology, which preserves the sensitivity and stability of the microsensors, is also assessed.
2021
pH sensors
HPTS
microparticles
fluorescence
ratiometric sensing
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/460323
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 2
social impact