Medical imaging data coming from different acquisition modalities requires automatic tools to extract useful information and support clinicians in the formulation of accurate diagnoses. Geometric Calculus (GC) offers a powerful mathematical and computational model for the development of effective medical imaging algorithms. The practical use of GC-based methods in medical imaging requires fast and efficient implementations to meet real-time processing constraints as well as accuracy and robustness requirements. The purpose of this article is to present the state of the art of the GC-based techniques for medical image analysis and processing. The use of GC-based paradigms in Radiomics and Deep Learning, i.e. a comprehensive quantification of tumor phenotypes by applying a large number of quantitative image features and its classification, is also outlined.

Geometric Calculus Applications to Medical Imaging: Status and Perspectives

Franchini Silvia;
2021

Abstract

Medical imaging data coming from different acquisition modalities requires automatic tools to extract useful information and support clinicians in the formulation of accurate diagnoses. Geometric Calculus (GC) offers a powerful mathematical and computational model for the development of effective medical imaging algorithms. The practical use of GC-based methods in medical imaging requires fast and efficient implementations to meet real-time processing constraints as well as accuracy and robustness requirements. The purpose of this article is to present the state of the art of the GC-based techniques for medical image analysis and processing. The use of GC-based paradigms in Radiomics and Deep Learning, i.e. a comprehensive quantification of tumor phenotypes by applying a large number of quantitative image features and its classification, is also outlined.
2021
978-3-030-74486-1
Geometric Calculus
Medical Imaging
Deep Learning
Radiomics
Multi-channel Medical Images.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/460394
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact