In this work, an experimental characterization of Shape Memory Alloy (SMA) springs was carried-out to assess the efficiency of simple analytical procedure for a preliminary design of Shape Memory Alloy-based spring actuators. Two static analytical models were considered recursively, respectively to determine SMA material properties by accurate tensile experimental test and to identify the optimized geometrical characteristic of SMA-bias spring-based unit for a specific feasible mini-actuator for vehicle moveable part. The final extra-force and displacement of the actuator was validated at different temperature above transformation temperature to assess the limitation of the implemented procedure.

Shape Memory Alloy-based actuator: experimental and modelling

Zarrelli Mauro;
2021

Abstract

In this work, an experimental characterization of Shape Memory Alloy (SMA) springs was carried-out to assess the efficiency of simple analytical procedure for a preliminary design of Shape Memory Alloy-based spring actuators. Two static analytical models were considered recursively, respectively to determine SMA material properties by accurate tensile experimental test and to identify the optimized geometrical characteristic of SMA-bias spring-based unit for a specific feasible mini-actuator for vehicle moveable part. The final extra-force and displacement of the actuator was validated at different temperature above transformation temperature to assess the limitation of the implemented procedure.
2021
SMA
Nitinol
actuator
martensitic
austenutic
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/460593
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 5
social impact