We investigate equilibria of charged deformable materials via the minimization of an electroelastic energy. This involves the coupling of elastic response and electrostatics by means of a capacitary term, which is naturally defined in Eulerian coordinates. The ensuing electroelastic energy is then of mixed Lagrangian-Eulerian type. We prove that minimizers exist by investigating the continuity properties of the capacitary terms under convergence of the deformations.
Equilibria of charged hyperelastic solids
U Stefanelli
2022
Abstract
We investigate equilibria of charged deformable materials via the minimization of an electroelastic energy. This involves the coupling of elastic response and electrostatics by means of a capacitary term, which is naturally defined in Eulerian coordinates. The ensuing electroelastic energy is then of mixed Lagrangian-Eulerian type. We prove that minimizers exist by investigating the continuity properties of the capacitary terms under convergence of the deformations.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
prod_485864-doc_201411.pdf
accesso aperto
Descrizione: Equilibria of charged hyperelastic solids
Tipologia:
Versione Editoriale (PDF)
Dimensione
287.69 kB
Formato
Adobe PDF
|
287.69 kB | Adobe PDF | Visualizza/Apri |
prod_485864-doc_201412.pdf
solo utenti autorizzati
Descrizione: Equilibria of charged hyperelastic solids
Tipologia:
Versione Editoriale (PDF)
Dimensione
429.79 kB
Formato
Adobe PDF
|
429.79 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.