The direct manipulation of individual atoms has led to the advancement of exciting cutting-edge technologies in sub-nanometric fabrication, information storage and to the exploration of quantum technologies. Atom manipulation is currently performed by scanning probe microscopy (SPM), which enables an extraordinary spatial control, but provides a low throughput, requiring complex critical experimental conditions and advanced instrumentation. Here, a new paradigm is demonstrated for surface atom manipulation that overcomes the limitations of SPM techniques by replacing the SPM probe with a coordination compound that exploits surface atom complexation as a tool for atomic-scale fabrication. The coordination compound works as a "molecular drone": it lands onto a substrate, bonds to a specific atom on the surface, picks it up, and then leaves the surface along with the extracted atom, thus creating an atomic vacancy in a specific position on the surface. Remarkably, the feasibility of the process is demonstrated under electrochemical control and the stability of the fabricated pattern at room temperature, under ambient conditions.
A Molecular Drone for Atomic-Scale Fabrication Working under Ambient Conditions
Mercuri Francesco;Cavallini Massimiliano
2021
Abstract
The direct manipulation of individual atoms has led to the advancement of exciting cutting-edge technologies in sub-nanometric fabrication, information storage and to the exploration of quantum technologies. Atom manipulation is currently performed by scanning probe microscopy (SPM), which enables an extraordinary spatial control, but provides a low throughput, requiring complex critical experimental conditions and advanced instrumentation. Here, a new paradigm is demonstrated for surface atom manipulation that overcomes the limitations of SPM techniques by replacing the SPM probe with a coordination compound that exploits surface atom complexation as a tool for atomic-scale fabrication. The coordination compound works as a "molecular drone": it lands onto a substrate, bonds to a specific atom on the surface, picks it up, and then leaves the surface along with the extracted atom, thus creating an atomic vacancy in a specific position on the surface. Remarkably, the feasibility of the process is demonstrated under electrochemical control and the stability of the fabricated pattern at room temperature, under ambient conditions.| File | Dimensione | Formato | |
|---|---|---|---|
|
Advanced Materials - 2021 - Baldoni.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
590.39 kB
Formato
Adobe PDF
|
590.39 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


